SIEMENS

Training manual

Sinumerik 808D Programming and Operating Procedures for Milling
 Version 2013-01

SIEMENS

Notes
(

Index

Absolute incremental dimensioning	Manual tool change
Editing part program	MDA
Executing M function	Moving axis with handwheel
Calculator	Part programming
Changing time	Protection levels
Contour editor	Program execution
Creating and measuring tools	Block search
Creating zero offsets	Reference point
Cycles	RS
Dry run	46
Jogging spindle	RS232c and USB
Tool wear	Saving data
List of programming functions	Simulation
Manual face milling	Subprograms
Manual start spindle	Sample program

Content

Unit Description

This unit describes the 808D PPU and MCP functionality, the coordinate system of a milling machine and how to enter passwords to access the system.

Unit Content

Basic Theory

The 808D panel processing unit (PPU) is used to input data to the CNC and to navigate to operating areas of the system.

The 808D machine control panel (MCP) is used to select the machine operating mode: JOG - MDA - AUTO

The 808D machine control panel (MCP) is used to control manual operation of the axis.
The machine can be moved with the appropriate keys.

The 808D machine control panel (MCP) is used to control OEM machine functions. The machine functions can be activated with the appropriate keys.

808D (PPU) has eight horizontal SKs on the bottom of the screen. These SKs can be activated with the corresponding button (located below).

SEQUENCE

Machine
coordinate
system

The Sinumerik 808D uses a coordinate system which is derived from the DIN 66217 standard.
The system is an international standard and ensures compatibility between machines and coordinate programming. The primary function of the coordinate system is to ensure that the tool length and tool radius are calculated correctly in the respective axis.

Passwords at the control are used to set the user's right to access the system. Tasks such as "Basic Operating", "Advanced Operating" and commissioning functions all depend on the passwords.

No password	Machine operator
Customer's password	Advanced operator
Manufacturer's password	OEM engineer

Changing
Customer's password = CUSTOMER password

Step 1

I
Usually the machine operator does not need to change the password.

The service mode is opened with the appropriate key combination. In the service mode, the password can be activated and deactivated.

Step 2

SIEMENS

Notes
\qquad

Switch On

Content

Unit Description

This module describes how to switch the machine on and reference it.

Unit Content

End

SEQUENCE

1
Please note the explicit switching on rules as specified by the machine manufacturer.

```
Step 1
```

Turn on the main switch of the machine.

The main switch is usually at the rear of the machine.

Step 2

Make sure you perform the following operation!

Release all the EMERGENCY STOP buttons on the machine!

Step 1

($\mathbf{M} \cdot$ Reffoint

$X(0)$	0.000	nn
Y O	0.000	nn
Z 0	0.000	nn

Step 2

After power on, the machine will be in the reference point approach mode (default).
After power on, the machine must first be referenced!

If the axis is not referenced, the nonreferenced symbol (circle) is displayed between the axis identifier and the value.

The axes are referenced with the corresponding axis traversing keys.
The traversing direction and keys are specified by the machine manufacturer.

Step 3

After completing the referencing procedure for all axes, the referenced symbol is displayed next to the axis identifier.

After returning to JOG mode, use the axis traversing keys to move the machine manually.

The machine can now be operated in JOG mode.

During normal operation (JOG), the referenced symbol is not shown on the screen.

SIEMENS

Notes

\qquad

SIEMENS

Notes
\qquad

Tool Setup

SIEMENS

Content

Unit Description

This unit describes how to create and set up tools.

Unit Content

SEQUENCE

Step 1 Please make sure the system is in JOG mode.
Press "Offset" on the PPU.

Press the "Tool list" SK on the PPU.

Page 13

SEQUENCE

Step 2
The range of tool numbers which can be created by this system is $1 \sim 32000$.
The machine can be loaded with a maximum of 64 tools / 128 tool edges.

Press the "OK" SK on the PPU.

Enter the "Radius" of the milling tool.

Create tool edge Use "D" code to specify the tool edge. The system activates tool edge no. 1 per default at the start.

Press the "Offset" key on the PPU.
Press the "Tool list" SK on the PPU.
Use direction keys to select the tool which needs to add a tool edge.

Tool Setup

SEQUENCE

Step 2

A new tool edge can be added in this way and different lengths and radii can be entered as required.

The red circle shows the actual active tool and tool edge, the purple circle shows how many tool edges have been created and the related data for each tool edge.

A maximum of nine tool edges can be created for each tool!
Different tool lengths and radii can be saved in different tool edges as required.
Please select the right tool edge for machining according to requirement!

Load tool into Spindle

A tool must have been created in the system before it can be loaded into the active position.

SEQUENCE

The tool are usually loaded manually into the spindle.
The tool will be automatically loaded into the spindle with an automatic tool changer.

Make sure there is no obstruction when moving the tool to avoid a crash.

A handwheel can control the axis motion instead of the "JOG" button.
Press the "Machine" key on the PPU
Press the "Handwheel" key on the MCP

(T)

Select the axis you want to move with the appropriate keys. on the MCP

wrs	Position	Repos offset
X	0.000	${ }^{8.8}$
Y	0.000	0.009 nn
Z	0.000	0.008

Under "WCS" or "MCS" state, a handwheel will be shown beside the axis symbols, showing the axis is chosen, and can be controlled with a handwheel.

Select the required override increment according to the buttons on the right

 (this selection fits all axes)

The override increment is " 0.001 mm"

The override increment is " 0.010 mm"

The override increment is " 0.100 mm "
 $\overrightarrow{1}$ $\overrightarrow{10}$ $\overrightarrow{100}$

The selected axis can now be moved with the handwheel.
Press "JOG" on MCP to end the function
 $\mathrm{m}_{\substack{m \\ n}}$

Notes: If set the MD14512[16]=80, the system will deactivate the function of MCP for selecting the axis of handwheel, the user will have to activate "Handwheel" function with PPU softkey.

Tool Setup

SEQUENCE

A tool must have been loaded and rotated to the position.

Start the spindle before adjusting tools as follows:

Press the "CYCLE START" key on the MCP

Measure tool

A tool must have been created and loaded before it can be measured!

Step 1 Measure length
Press the "Machine" key on the PPU
Press the "JOG" key on the MCP
Press the "Measure manual" SK on the "Meas. tool" SK on the PPU
PPU

Tool Setup

SEQUENCE

Press the axis keys on the MCP to move the tool to the set position above the workpiece.

Note: The following text describes the required settings in the workpiece coordinate system
"X / Y / Z" zero points as:"XO" / "YO" / "ZO"

Press the "Handwheel" key on the MPC and position the tool at location

ZO or a of the workpiece.

Move directly to zero point
or

Use a setting block.

Enter "0" for "Z0"
(If the setting block is used, then the
 value would be thickness a)

The measured tool length is now shown in "Length (L)". This value is also saved in the length value column of the corresponding tool list at the same time.

Step2 Measure diameter

Press the "Diameter" SK on the PPU

Diameter
Use "SELECT" key to set the reference point as "workpiece" (In real measurement, the reference point
 can be set as either "workpiece" or " fixed point" if required.

Pren

Tool Setup

SEQUENCE

Press the axis keys on the MCP to move the tool to the set position.

Press the "Handwheel" key on the MCP and position the tool at the location X0 or a of the workpiece.

Move directly to zero point

Use a setting block.

Enter " 0 " at " X 0 "
Enter "0" at "Y0"
(This is the value of the width of a
 setting block if it is used. Select one of X0/Y0 according to requirement.)

Press the "Set diameter" SK on the PPU

Press the "Back" SK on the PPU

SEQUENCE

Jog spindle
A tool must be loaded to the spindle.

Press the "Machine" key on the PPU.

Press the "JOG" key on the MCP.

Press the spindle direction key on the MCP to start/stop the spindle.

Press "Spindle left" on the MCP to start the spindle in the counter-clockwise direction. \qquad =

Press "Spindle stop" on the MCP to stop the spindle.

Press "Spindle right" on the MCP to start the spindle in the clockwise direction.

Execute M function

APlease make sure all the machine axes are in safe positions before executing the \mathbf{M} function!

Press the "Machine" key on the PPU.

Press the "T.S.M" SK on the PPU.

Use the direction key to move the highlighted cursor to "Other M function" and enter " 8 ". This will start the
 coolant.

The coolant function button on MCP is active.

Press the "Reset" key on the MCP to stop the coolant function.

Press the "Back" SK on the PPU.

SIEMENS

Notes

\qquad

SIEMENS

Notes
\qquad

Content

Unit Description

This unit describes how to set the workpiece offset and test the tool results.

Unit Content

End

SEQUENCE

$\left.\begin{array}{c}\text { Manual } \\ \text { start } \\ \text { spindle }\end{array}\right\rangle \begin{aligned} & \text { A tool must have been loaded into } \\ & \text { the spindle. }\end{aligned}$

Before measuring, the spindle can be started as follows:
Press the "Machine" key on the PPU.

Press the "JOG" key on the MCP.

Press the "T.S.M" SK on the PPU.

Enter "500" in "Spindle speed" on the PPU

Select "M3" as the "Spindle direction" using the "Select" key on the
 PPU.

Press "CYCLE START" on the MCP.

SEQUENCE

Press the "Reset" key on the MCP to stop the spindle rotation.

Press the "Back" SK on the PPU.

A tool must have be created and measured before it can be used to set the workpiece offset.

Make sure the active tool is the measured tool!
Press the "Machine" key on the PPU.
Press the "JOG" key on the MCP.

Press the "Meas. work." SK on the PPU.
最 Mork.
As the following red frame shows, 808D provides the user with three methods of using tools to simplify the operating process.

Page 24

SEQUENCE

Method1 This method is normally for setting the zero point of the workpiece at the edge of the workpiece.

Using a tool that has a measured "Tool length \& radius", move the tool to a known position on the workpiece. Using either JOG or Handwheel, scratch an edge and then calculate the zero point of the workpiece. The process of setting the " X " zero point (" X 0 ") is described below.

Press the corresponding SK of the first icon on the right-hand side of the PPU.

Press the appropriate SK to select the feed axis which needs to be set up.

Press the axis traverse keys to move the tool to the required setting position in the X axis.

Press the "Handwheel" key on the MCP to position the tool at the

X0 edge of the work-
piece.

Select "Save in" Offset "G54" (or other offset).

Select "Measuring direction" as "-".
(This value should be chosen according to
 realities)

Set "Distance" as "0".

Press the "Set WO" SK on the PPU.
Workpiece measurement, edge

"Step 2" must be repeated for the setting of Y and Z zero points. If you change the tool because of wear/damage during the machining process, you must remeasure the length of the tool.

SEQUENCE

Method 2 This method is normally used for setting the workpiece zero point at the center point of a rectangular workpiece.

Using tools with a measured "length and radius", move them to the four edges of the rectangular workpiece. Using either JOG or Handwheel, scratch an edge and then calculate the zero point of the workpiece.

Press the corresponding SK of the second icon on the right-hand side of the PPU.

Observing the figure on the PPU, move the coordinate axis following the orange arrow to move the tool to the specified position and scratch the edge of the workpiece.

Press the "Save P1" SK on the PPU to save the coordinate axis of the 1st position in the system.

You have then finished setting the zero point of the workpiece as the center point of the rectangular workpiece.

Repeat the process for positions 2,3 and 4 . (When the setting is complete, the buttons will be shown in blue.)

Press the "Set WO" SK on the PPU.

Method 3 This method is normally used for setting the zero points at the center point of a circular workpiece.

Using tools with a measured "length and radius", move them to the three edges of the circular workpiece. Using either JOG or Handwheel, scratch an edge and then calculate the zero point of the workpiece.

Press the corresponding SK of the third icon on the right-hand side of the PPU.

Observing the figure on the PPU, move the coordinate axis following the orange arrow to move the tool to the specified position and scratch the edge of the workpiece.

Press the "Save P1" SK on the PPU to save the coordinate axis of the 1st position in the system.

You have then finished setting the zero point of the workpiece as the center point of the circular workpiece. Setup

SEQUENCE

The tool setup and workpiece setup must have been performed correctly so
that it can be tested as follows!

In order to ensure the machine safety and correctness, the results of the tool offset should be tested appropriately.

Press the "Machine" key on the PPU.
M

Press the "MDA" key on the MCP.
回

Press the "Delete file" SK on the PPU. \qquad Delete Delete
file

G54 (select offset pane as required)
Enter the test program recommended on the right. (can also be cus-

T1 D1
G00 X0 Yo 75
Press the "ROV" key to ensure that the "ROV" function is activated (the function is activated when the light on the key is on).

Note: The ROV function activates the feedrate override switch under the G00 function.

I
Make sure the feedrate override on the MCP is at 0\%!

Press "CYCLE START" on the MCP.

Increase the feedrate override gradually to avoid accidents caused by an axis moving too fast. Observe whether the axis moves to the set position.

SIEMENS

Notes
\qquad

Content

Unit Description

This unit describes how to create a part program, edit the part program and get to know the most important CNC commands required to produce a workpiece.

Unit Content

Create Part Program Part 1

SEQUENCE

Create program

Step 1
Programs can be created with the "program manager". You can select the "program manager" using the key located on the PPU.

Step 2

Select NC as the storage location for the program. Programs can only be created in the NC.

Step 3

Create Part

 Program

The program shown in the editor can be created and edited with the appropriate keys.

Inches and

mm

G71

With G71 at the header, the geometry data will be in the metric unit system, the feedrate in the default metric system.

Header T, F, S function Geometry data / motion Return to change tool

N5 G17 G90 G54 G71

N10 T1 D1 M6
 N15 S5000 M3 G94 F300
 N20 G00 X100 Y100 Z5
 N25 G01 Z-5
 N30 Z5
 N35 G00 Z500 D0

G70
With G70 at the header, the geometry data will be in the imperial (inches) unit system, the feedrate in the default metric system.

Definition of target position

G500
All absolute path data will be relative to this position. The position is written in the G500 (basic) zero offset.

Or
G54 G55 G56 G57 G58 G59
With G500 = 0, the offset for the workpiece can be stored in the G54 workpiece offset.

N5 G17 G90 G500 G71

N10 T1 D1 M6

N15 S5000 M3 G94 F300
N20 G00 X50 Y50 Z5
N25 G01 Z-20
N30 Z5
N35 G00 Z500 D0

N5 G17 G90 G54 G71

N10 T1 D1 M6

N15 S5000 M3 G94 F300

N20 G00 X0 Y0 Z5
N25 G01 Z-20
N30 Z5
N35 G00 Z500 D0

Or

N5 G17 G90 G500 G71
N10 T1 D1 M6
N15 S5000 M3 G94 F300
N20 G00 G54 X20 Y20 Z5
N25 G01 Z-20
N30 Z5
N35 G00 G53 Z500 D0

Absolute positioning; with G90 at the header, the geometry data which follows will be interpreted relative to the active zero point in the program, usually with G54 or G500 or G500 + G54.

G91

Relative positioning; with G91 you can add an incremental value (G91-defined data is the relative positioning using the present position as the start point). Finally you should change the program to absolute positioning with G90.

N5 G17 G90 G54 G71

N10 T1 D1 M6
N15 S5000 M3 G94 F300
N20 G00 X100 Y100 Z5
N25 G01 Z-20
N30 Z5
N35 G00 Z500 D0

N5 G17 G90 G54 G70

N10 T1 D1 M6
N15 S5000 M3 G94 F300
N20 G00 X3.93 Y3.93 Z0.196
N25 G01 G91 Z-0.787
N30 Z0. 196
N35 G00 G90 Z19.68 D0

Basic Theory

Rapid

 motion
G00

When G00 is activated in the program, the axis will traverse at the maximum axis speed in a straight line.

T1 D1 M06
Using the " T " command, the new tool can be selected. The "D" command is used to activates the tool length offset.
M06 can be also used for machines with automatic tool changer.

N5 G17 G90 G54 G71

N10 T1 D1 M6 N15 S5000 M3 G94 F300
N20 G00 X50 Y50 Z5

N25 G01 Z-5

N30 Z5

N35 G00 Z500 D0

N5 G17 G90 G54 G71

N10 T1 D1 M6
N15 S5000 M3 G94 F300
N20 G00 X50 Y50 Z5
N25 G01 Z-20
N30 Z5
N35 G00 Z500 D0

Basic Theory

Behavior at corners

Activation/ deactivation of the tool radius compensation when working on the part contour.

G41 / G42 and G40
With G41/G42,
the tool radius compensation will be done in the direction of travel.

G41: Compensation
to left

G42: Compensation to right

G40: Compensation of the radius can be deactivated

G41 \rightarrow direction

 along the tool motion, tool is always on the left of the contour.G42 \rightarrow direction along the tool motion, tool is always on the right of the contour.

Arrow indicates the direction of tool motion along the contour.

When traversing circular contours with cutter radius compensation, it should be decided whether the feed rate should be calculated along the contour of the workpiece or along the path defined by the center point of the cutting tool.

When using a contour with a feed rate defined by the CFC code, the feed rate will be constant at the contour, but in some cases, it may cause increases in the feed rate of the tool.

This increase could damage the tool if excessive material is encountered at the contour; this function is normal for finish cutting of contours.

The CFTCP command ensures a constant feed rate, however a constant feed rate may not be ensured at the contour, which may cause deviations in surface finish.

The result of the two commands will be such that the cutter goes very fast around a corner or slow on the contour.

The circle radius shown in the example on the right can be produced with the specified part program code. When milling circles and arcs, you must define the circle center point and the distance between the start point / end point and the center point on the relative coordinate. When working in the XY coordinate system, the interpolation parameters I and J are available.

Two common types of defining circles and arcs:
(1): G02/G03 X_Y_I_J_;
(2): G02/G03 X_Y_CR=_;

Arcs $\leqslant 180^{\circ}$, CR is a positive number
Arcs $>180^{\circ}$, CR is negative number

When milling circles, you can only use (1) to define the program!

N5 G17 G90 G500 G71

N10 T1 D1 M6

N15 S5000 M3 G94 F300
N20 G00 X-20 Y-20 Z5
N25 G01 Z-5
N30 G41 X0 Yo
N35 Y50
N40 X100
N45 G02 X125 Y15 I-12 J-35
N50 G01 Y0
N55 X0
N60 G40 X-20 Y-20
N35 G00 Z500 D0

Note:

N45 can also be written as follows
N45 G02 X125 Y15 CR=37

$$
\text { acs } 1 \text { Iov, CK is negative number }
$$

SP = start point of circle
$\mathrm{CP}=$ center point of circle
$E P=$ end point of circle
$I=$ defined relative increment from start point to center point in X
$J=$ defined relative increment from start point to center point in Y
G2 = define circle direction in traversing direction $=\mathrm{G} 2$ clockwise
G3 = define circle direction in traversing direction $=$ G3 counterclockwise

Moving to a
fixed
position

Using the code G74, the machine can move to the reference point automatically.

N5 G17 G90 G500 G71
N10 T1 D1 M6
N15 S5000 M3 G94 F300
N20 G00 X50 Y50 Z5
N25 G01 Z-5
N30 $\mathbf{Z 5}$
N35 G74 Z=0 ; reference point

Using the code G75,
the machine can move to the fixed position defined by the machine supplier automatically.

N5 G17 G90 G500 G71
N10 T1 D1 M6
N15 S5000 M3 G94 F300
N20 G00 X50 Y50 Z5
N25 G01 Z-5
N30 $\mathbf{Z 5}$
N35 G74 Z=0 ; reference point
N40 G75 X=0; ;fixed point

The following functions can be used to influence the operation of the spindle:

M3 accelerate to programmed speed clockwise

M4 accelerate to programmed speed counter-clockwise

M5 spindle decelerate to stop
M19 orient the spindle to a specific angular position.

G04 can be used to pause the tools' movements during operation

G04 F5: Program pause of 5 s
This makes the surface of the workpiece much smoother

N5 G17 G90 G500 G71

N10 T1 D1 M6

N15 S5000 M3 G94 F300
N20 G00 X50 Y50 Z5
N25 G01 Z-5
N30 M5
N35 Z5 M4
N40 M5
N45 M19
N50 G00 Z500 D0

N5 G17 G90 G500 G71
N10 T1 D1 M6
N15 S5000 M3 G94 F300
N20 G00 X50 Y50 Z5
N25 G01 Z-5
N30 G04 F5
N35 75 M4
N40 M5
N45 M19
N35 G00 Z500 D0

SIEMENS

Notes

\qquad

SIEMENS

Notes
\qquad

Content

Unit Description

This unit describes how to create a part program, edit the part program and get to know the most important CNC commands required to produce a workpiece.

Part 2

Unit Content

Basic Theory

The two radii and the chamfer shown in the diagram can be produced with the code marked in the program below.

RND = Radii
CHR = Chamfer
(specified side length of isosceles triangle with chamfer as base line)
CHF=Chamfer
(specified base line length of isosceles triangle with chamfer as base line)

N55 SUPA G00 Z300 D0
N60 SUPA G00 X300 Y300

N65 T3 D1

N70 MSG("Please change to Tool No 3") N75 M05 M09 M00

N80 S5000 M3 G94 F300
N85 G00 X-6 Y92
N90 G00 Z2
N95 G01 F300 Z-10
N100 G41 Y 90
N102 G01 X 5
N105 G01 X12 RND=5
N110 G01 Y97 CHR=2
N115 G01 X70 RND=4
N120 G01 Y90
N125 G01 G40 X80
N130 G00 Z50

With the "OK" SK, the values and cycle call will be transferred to the part program as shown below.
This will drill a hole at the current position.
With the Modal call SK, holes will be centered at subsequent programmed positions until cancelled with the MCALL command in the part program. The information is transferred as shown below.

N325 MCALL CYCLE82(50.000, -3.000,
2.000, -5.000, 0.000, 0.200)

N330 X20 Y20; Hole will be centered
N335 X40 Y40; Hole will be centered

N340 MCALL

N345 X60 Y60 ; Hole will not be centered

Create Part

 Program
Basic Theory

Drilling
 holes

The easiest method to drill holes is with CYCLE81／82： Without／with delay at current hole depth
CYCLE83：Each drilling
operation needs a withdraw－ al distance during deep hole drilling．
The cycle can be found and parameterized with the ＂Drill．＂SK．

$\mathrm{m}_{\text {jog }}$			${ }^{12.256: 35}$
H：NMPFYDEMD PART＿1．HPF N690 SUPA GOB Z30日 DG			Drilling
			Derep hole
			Baring
N77日 X36 Y24． 1 T N78G MCALL ；Modal call Off π			
			Hole
－－－Tapping start ${ }^{1}$			
N818 TB D1 NB2E HSG（＂please change to Tool No 8＂） N84日 S50 mb π			
			Desclecter nodal
	SActive	Sinu．	圈 ${ }^{\text {Re }}$

I Drill．

The relevant cycle can now be found using the vertical SKs on the right．

Deep hole drilling

Select ＂Deep hole drilling＂ using the vertical SKs and parame－ terize the cycle according to re－ quirements．

With the＂OK＂SK，the values and cycle call will be transferred to the part program as shown below． This will drill a hole at the current position．
With the＂Modal call＂SK，holes will be drilled at subsequently pro－ grammed positions until cancelled with the MCALL command in the part program．
The information is transferred as shown below．

N325 MCALL CYCLE83（ 50．00000，－3．00000，1．00000，，9．24000，，5．00000， $90.00000,0.70000,0.50000,1.00000,0,0,5.00000,1.40000,0.60000,1.60000$ ）
N330 X20 Y20 ；Hole will be drilled
N335 X40 Y40；Hole will be drilled
N340 MCALL
N345 X60 Y60 ；Hole will not be drilled

SIEMENS

Basic Theory

4 For descriptions of RTP, RFP, SDIS and DP, please see page 40		
FDEP $=5$	Reach first drilling hole depth. Z axis coordinate is -5 (absolute coordinate value)	
FDPR=5	From the reference plane, drill downwards 5 mm	
DAM $=90$	Decrement is 90	
DTB $=0.7$	Pause 0.7 s during final tapping of thread depth (discontinuous cutting)	DTB < 0 : Unit is r
DTS $=0.5$	Stops at the start position for 0.5 s (for VARI=1, removal active)	DTS <0: Unit is r
$\begin{aligned} & \text { FRF=1 } \\ & \text { (range:0.001~1) } \end{aligned}$	Original effective feed rate remains unchanged	Feed rate modulus
VARI=0	Interruption in drilling is active	VARI=1 retraction of active quill back to reference plane
AXN=3	AXN is tool axis, under appointed G17 use Z axis	The value of $A X N$ decides which axis to use
MDEP=5	Minimal drilling depth 5 mm	This parameter activates only when DAM <0
$\mathrm{VRT}=1.4$	Interruption in drilling, the retraction value of the quill is 1.4 mm	VRT $=0 \rightarrow$ retraction value is 1 mm VRT>0 \rightarrow retraction value is appointed value
DTD=0.6	Pauses at the position of final drilling depth for 0.6 s	DTD <0 :unit is $\mathrm{r}, \mathrm{DTD}=0$:same as DTB
DIS1=1.6	When reinserting a quill, you can program a distance limit of 1.6 mm	For specific explanations please refer to the standard handbook

DAM parameter

(1)DAM $\neq 0$, the first drilling operation (FDPR) cannot exceed the drilling depth. As of the second drilling operation, the drilling is acquired from the last depth operation (drilling depth=last drilling depth-DAM). The calculated drilling must be >DAM. If the calculated drilling is \leqslant DAM, as of the next feed, the DAM value will be the feed depth until the end of the feed. If the last remaining depth is <DAM, then drilling is performed automatically until the required depth is reached.
(2) $D A M=0$, drilling depth each time is same as the 1 st drilling depth (FDPR),

In case the residual depth $<2 x F D P R$, the last 2 cutting depth are half of the residual depth.

Example: 40 mm deep hole as an example, with DAM $=2 \mathrm{~mm}$ and DAM $=0 \mathrm{~mm}$ feed					
Feed times	$\begin{aligned} & \text { Every feed depth/ } \\ & \mathrm{mm} \\ & \text { DAM=2 } \end{aligned}$	Actual depth/ mm	Feed times	$\begin{aligned} & \text { Every feed depth/ } \\ & \mathrm{mm} \\ & \text { DAM }=0 \end{aligned}$	Actual depth/ mm
1.	FDPR=10	-10	1.	FDPR=10	-10
2.	FDPR-DAM $=10-2=8$	-18	2.	FDPR=10	-20
3.	$\begin{aligned} & \text { (FDPR-DAM)-DAM } \\ & =8-2=6 \end{aligned}$	-24	3.	FDPR=10	-30
4.	(FDPR-2DAM)- DAM $=6-2=4$	-28	Remaining depth $=10<2 \times$ FDPR, the remaining depth distribute by the last two drilling		
5.	(FDPR-3DAM)- DAM $=4-2=2$	-30	4.	5	-35
6.	DAM=2	-32	5.	5	-40
7.	DAM=2	-34	6.		
8.	DAM=2	-36	7.		
9.	DAM=2	-38	8.		
10.	DAM=2	-40	9.		\square

Create Part

 Program Part 2
Basic Theory

Tapping

The easiest way to tap a hole is to use CYCLE84: Solid tap holder CYCLE840: With floating tap holder. The cycles can be found and parameterized using the "Drill." SK.

Drill.
The relevant cycle can now be found using the vertical SKs on the right.
Thread

Thread

| $\begin{array}{l}\text { Rigid } \\ \text { tapping }\end{array}$ |
| :--- | tapping

Select "Thread" using the vertical SKs ,and then select "Rigid tapping", and parameterize the cycle according to requirement.

With the "OK" SK, the values and cycle call will be transferred to the part program as shown below. This will drill a hole at the current position.
If there is no other operation, the machine will drill holes in the current position.
With the "Modal call" SK, holes will be tapped at subsequently programmed
 positions until cancelled with the MCALL command in the part program.
Examples are shown on the next page.

Create Part

 Program
Basic Theory

N325 MCALL CYCLE84(50.00000, -3.00000, 2.00000, ,6.00000, 0.70000, 5, ,2.00000, 5.00000, 5.00000, 5.00000, 3, 0, 0, 0, 5.00000, 1.40000)
N330 X20 Y20; Hole will be tapped
N335 X40 Y40; Hole will be tapped

N340 MCALL

N345 X60 Y60 ; Hole will not be tapped

Operating and Programming — Milling

Create Part Program Part 2

Basic Theory

The easiest way to drill a series of holes is to use the pre-defined "Hole pattern" cycles. The cycles can be found and parameterized via the "Drill." SK.

. Y Drill

The relevant cycle
can now be found using the vertical SKs on the right.

Select
"Hole pattern" using the vertical SKs , and then select "Hole circle", and parameterize the cycle according to requirement.

With the "OK" SK, the values and cycle call will be transferred to the part program as shown below. This will drill holes at the positions defined from within the cycle.

N325 MCALL CYCLE82(50.00000, -3.00000, 2.00000, -5.00000, 0.00000 , 0.20000)

N330 HOLES2(36.00000, 24.10000, 10.00000, 90.00000, 60.00000, 6) N335 X36 Y24. 1
N340 MCALL ; Modal Call OFF

Parameters	Meanings					
CPA $=36$	Center of hole circle horizontal coordinate is 36 (absolute value)					
$\mathrm{CPO}=24.1$	Center of hole circle horizontal coordinate is 24.1 (absolute value)					
RAD $=10$	Angle between the circle and horizontal coordinate is 90°					
STA1 $=90$	Angle between the circles is 60°					
INDA $=60$	Drill 6 holes on circle					
NUM $=6$	The cycle is used together with the drilling fixed cycle to decrease the hole clearance					

Create Part Program
 Part 2

Basic Theory

The easiest way to rough and finish around a contour is to use the contour milling function.
The cycle can be found and parameterized via the "Mill." SK.

Hinill.

The "Contour milling" SK can be found in the vertical SKs on the right.

Contour
 illing

The parameterization is performed as in this figure.

The contour can be edited and stored in the main program file after the M30 command when using the "Attach contour" SK.

Create Part Program

When you have opened the screen for setting the contour data, you can make the following settings:

Enter appropriate start point coordinates as in the machining figure and select the correct approach.

Press the "Accept element" SK on the PPU.

Accept Accept
element

The selected direction is shown at the top left side of PPU.

The meanings of the highlighted positions is shown at the bottom of the PPU screen.

Press the "Accept element" SK on the PPU.

Select different items (SKs) to set the contour until finishing editing the whole shape of the
contour.

Enter the corresponding coordinate parameters.
Use the arrows on the PPU to select the direction and the shape of the contour milling.
element

Basic Theory

After completing the steps, the system will return to the edit interface. Press "Technical interface" on the PPU to return to the interface for setting the cycle data.

After finishing the parameter settings of CYCLE72, press the "OK" SK on the PPU to insert the corresponding cycles in the main program.

New
With the "New" SK and "Contour milling", the operation can be edited and saved in a subprogram.
The editing in the subprogram is the same as above.

With the "OK" SK, the values and the cycle call are transferred to the part program as shown below.

N245 CYCLE72("CONT1:CONT1_E", 50.00000, 0.00000, 2.00000, -5.00000, $5.00000,0.00000,0.00000,300.00000,100.00000,111,41,12,3.00000$, 300.00000, 12, 3.00000)

For descriptions of RTP, RFP, SDIS and DP, please see page 40		
Parameters	Meanings	Remarks
$\begin{aligned} & \text { KNAME= } \\ & \text { CONT1:CONT1_E } \end{aligned}$	Set the name of the contour subprogram as "CONT1" (": CONT1_E" is automatically created)	The first two positions of the program name must be letters
MID $=5$	The maximal feed depth is 5 mm	
FAL $=0$	Finishing allowance at the contour side is 0 mm	
FALD $=0$	Finishing allowance at the bottom plane is 0 mm	
FFP1 $=300$	Tool feed rate on plane is $300 \mathrm{~mm} / \mathrm{min}$	
FFD $=100$	Feed rate after inserting the tool in the material is $100 \mathrm{~mm} / \mathrm{min}$	
VARI=111	Use G1 to perform rough machining, and back to the depth defined by the RTP+SDIS at the completion of the contour	For other parameters, please refer to the standard manual
RL=41 (absolute value)	PL=41 \rightarrow use G41 to make tool compensation on the left side of the contour	$\mathrm{PL}=40 \rightarrow \mathrm{G} 40, \mathrm{PL}=42 \rightarrow \mathrm{G} 42$
AS1=12	Approach the contour along the $1 / 4$ circle on the path in space	For other parameters, please refer to the standard manual
LP1=3	The radius of the approaching circle is 20 mm	The length of the approaching path is along the line to approach
FF3 $=300$	The feed rate during retraction of the path is $300 \mathrm{~mm} / \mathrm{min}$	
AS2 $=12$	Return along the $1 / 4$ circle on the path in space	Parameter explanations are the same as for AS1
LP2=3	The radius of the return circle is 20 mm	The length of the returning path is along the line to approach

Create Part

 Program
Basic Theory

Milling slots

and spigots

The easiest way to mill a slot is to use the SLOT2 cycle. The cycle can be found and parameterized via the "Mill." SK.

UMill.

The relevant cycle can be found using the vertical SKs on the right.

With the "OK" SK, the values and cycle call will be transferred to the part program as shown below. This will perform milling at the position defined in the
 cycle.

SIEMENS

Basic Theory

N210 SLOT2(50.00000, 0.00000, 2.00000, , 3.00000, 3, 30.00000, 6.00000, 38.00000, 70.00000, 20.00000, 165.00000, 90.00000, 300.00000, 300.00000, 3.00000, 3, 0.20000, 2000, 5.00000, 250.00000, 3000.00000,)

For descriptions of RTP, RFP, SDIS, DP and DPR, please see page 40 For descriptions of CPA, CPO and RAD, please see page 45 For descriptions of FFD and FFP1, please see page 48

Parameters	Meanings	Remarks
NUM $=3$	Three slots on the circle	
AFSL=30	Angle slot length is 30°	4. AFSL and WID jointly decide the shape of the slot in the plane
WID=6	Slot width is 6 mm	
STA1=165	Start angle, angle between the effective work piece horizontal coordinate in positive direction and the first circle slot is 165°	
INDA $=90$	Incremental angle, angle between the slots is 90°	INDA=0, cycle will calculate the incremental angle automatically
MID $=3$	Maximal depth of one feed is 3 mm	MID $=0 \rightarrow$ complete the cutting of the slot depth
CDIR=3	Milling direction G3 (in negative direction)	Evaluate value $2 \rightarrow$ use G2 (in positive direction)
FAL=0.2	Slot side, finishing allowance is 0.2 mm	
VARI=0	The type of machining is complete machining	VARI $=1 \rightarrow$ roughing VARI $=2 \rightarrow$ finishing
MIDF $=5$	Maximal feed depth of the finishing is 5 mm	
FFP2=250	Feed rate of finishing is $250 \mathrm{~mm} / \mathrm{min}$	
SSF=3000	Spindle speed for finishing is $3000 \mathrm{~mm} / \mathrm{min}$	
A If FFP2/SSF are not specified, then use the feed rate/spindle speed of rotation as default		
FFCP=	Feed rate at the center position on the circle path, unit is $\mathrm{mm} / \mathrm{min}$	

Before recalling the cycle, you must set the tool radius compensation value.

Notes

SIEMENS

Notes
\qquad Program

SIEMENS

Content

Module Description

This unit describes how to simulate a part program before executing it in AUTO mode.

Module Content

Simulate program (Axis do not move)

SEQUENCE

A part program must have been created before it can be tested using
"Simulation".

Step 1

The part program must be opened using the "Program Manager" on PPU.

Simulate

 ProgramSIEMENS

SEQUENCE

Step 2

Press the "Simu." SK on the PPU.

If the control is not in the correct mode, a message will be displayed at the bottom of the screen.
If this message is displayed at the bottom of the screen, press the
 "AUTO" mode key on the MCP.

Step 3

Press the "CYCLE START" key on the MCP.

Press the "Edit" SK on the PPU to return to the program.

End

SIEMENS

Notes

\qquad

SIEMENS

Notes
\qquad

Content

Unit Description

This unit describes how to load the program in "AUTO" mode and test the part program at fixed speed.

Unit Content

End

SEQUENCE

Before the part program can be loaded and executed in AUTO mode, it must be tested using the simulation function mentioned previously!

Press the "Execute" SK on the PPU.

Now the program is ready to start and the actual operation will be described in the next section!

SEQUENCE

Dry Run
Before executing the "Dry Run", please change the offset value appropriately for the real workpiece size in order to avoid cutting the real workpiece during the dry run and avoid unnecessary danger!

Note: The following operation is based on the finished "program execution"

The data in the "Dry run feedrate" must first be set and checked!

Press the "Offset" key on the PPU. \qquad
\square

Press the "Sett. data" SK on the PPU \qquad $\mathrm{SD}_{\text {data }}^{\text {Sett. }}$

Use the traversing key to move to the required position. The position is now highlighted.

Enter the required feedrate in $\mathrm{mm} / \mathrm{min}$, enter " 2000 " in the example.

Note: The "DRY" symbol is shown and the "Dry run feedrate" SK is highlighted in blue.

Press the "Back" SK on the PPU

Step 2
Make sure the feedrate override on the MCP is 0\%.

Press "Door" on the MCP to close the door of the machine. (If you don't use this function, just close the door in the
 machine manually.)

Press "CYCLE START" on the MCP to execute the program.

Turn the feedrate override gradually to the required value.

After finishing the dry run, please turn the changed offset back to the original value in order to avoid affecting the actual machining!

SIEMENS

Notes

\qquad

SIEMENS

Notes
\qquad

Content

Unit Description

This unit describes how to use the Time counter function and how to machine pieces and the compensation setting for the tool wear．

Unit Content

Basic Theory

Make sure the machine has been refer－ enced before machining workpieces ！

Step 1

Press the＂Machine＂key on the PPU．

Press the＂Auto＂key on the MCP．

Press the＂Time counter＂SK on the PPU．
 Time counter

DEMO＿PART＿1．MPF
DN10 G17 G90 G54 G71
N20 SUPA G00 2300 D日介
N30 SUPA G00 $\times 300$ Yз00
N4B T1 D1 1
NSO MSG（＂Please change to Tool No 1＂）！ N60 M05 M09 M00介 N70 S4808 M3爪

Pieces

SEQUENCE

"Cycle time" shows how long the program has been running.

"Time left" shows how much time remains before the program ends.

Step 2

A
The "Time left" can only be counted after a successful cycle run of a part program!

Select "Yes" or "No" to decide whether to activate the counter (press the

Enter the number of workpieces you

Required 45 require to be machined in "Required".

Actual es that have been machined.

Make sure that only "AUTO" mode and "ROV" mode are activated
 (or select the M01 function if required)

Notes: M01 function \rightarrow program will stop at the position where there is M01 code.

Set the program in the ready-to-start status as shown on the left in accordance with the "Program execution" sequences.

Perform the relevant safety precautions !

\triangle

Make sure that the feedrate override on the MCP is 0% !

Press "Door" on the MCP to close the door of the machine. (If you don't use this function, just close
 the door on the machine manually.)
Press "CYCLE START" on the MCP to execute the program

Turn the feedrate override gradually to the required value. Pieces

SEQUENCE

The tool wear compensation must distinguish the direction of compensation clearly !

Step 1

Press the "Offset" key on the PPU.
Press the "Tool wear" SK on the PPU.
Use the direction keys to select the required tools and their edges.

Step 2

Set the tool length wear parameter of axis X in "Length X ", the sign determines the direction of wear compensation.
Set the tool length wear parameter of axis Z in "Length Z ", the sign determines the direction of wear compensation.
Positive value: The tool moves away from the workpiece
Negative value: The tool moves closer to the workpiece
Press "Input" on the PPU to activate the compensation.

Set the tool radius wear parameter in "Radius", the sign determines the direction of wear compensation.
Positive value: tool is away from workpiece (set radius bigger than real one)
Negative value: tool is close to workpiece (set radius smaller than real one)

Press "Input" on the PPU to activate the compensation.

SIEMENS

Notes
\qquad

Content

Unit Description

This unit describes how to restart the part program after a tool has been changed due to damage, or remachining has to be performed.

Unit Content

End

SEQUENCE

Block

 SearchPress the "Machine" key on the PPU.

Press the "Auto" key on the MCP.

Press the "Block search" SK on the PPU

Press the "Interr. point" SK on the PPU and the cursor will move to the last interrupted program line.

Note: The cursor can be moved to the required program block with the traversing keys.

Press the "To end point" SK on the PPU. (can also press "To contour" if required)

Program

 Restart
SEQUENCE

\triangle
The feedrate override must always be set to 0% ! Make sure the correct tool is selected before continuing!

Press the "CYCLE START" key on the MCP to execute the program.

Alarm 010208 is shown at the top prompting to press the "CYCLE START" key to continue the program.

Press the "CYCLE START" key on the MCP to execute the program.

Turn the feedrate override on the MCP gradually to the required value.

SIEMENS

Notes

\qquad

SIEMENS

Notes
\qquad

Additional

 Information
Content

Unit Description

This unit describes how to perform simple tasks on the machine and provides some additional information which may be required to operate the machine correctly.

Unit Content

SEQUENCE

RS232 is used to transfer the programs to and from the NC.

Step 1 It is recommended to use the "SINUCOM PCIN" communication SW provided by Siemens to transfer the standard program.

Adjust the parameter settings on the PPU to match the settings of the communication SW on the PC.

Press "Program Manager" on the PPU.
Press the "RS232" SK on the PPU.

Press the "Settings" SK on the PPU.

Settings
Adjust the parameters in "Communication settings" to match the settings of communication SW on PC.

Communications settings	
Device	RTS CTS
Baud rate	19200
Stop bits	10
Parity	None O
Data bits	80
End of transmis.	1 a
Confirm overwrite	NO

Press the "Save" SK on the PPU.

Press the "Back" SK on the PPU.

SEQUENCE

Step 2

Transfer a part program to a PC from the PPU.
Press the "NC" SK on the PPU.

NC NC

Use "Cursor + Select" to select the required part program.
The selected program will be highlighted.
Press the "Copy" SK on the PPU.

Copy

Press the "RS232" SK on the PPU.

Check the interface setting and start the communication software to receive the program on PC.
(Press "Receive Data" on SINUCOM PCIN to start the receive function.)
Press the "Send" SK on the PPU.

Send

The PPU will display a window showing the progress of the transfer.

Sending of data		19280,8,1,NONE
File:	- ${ }_{\text {- }}$ DEMO_PART_1 _MPF	
From	N :	
To	RS232	
Bytes:	4095	

If there is a problem during transfer of the part program, a window will be displayed.

RS232 communications are interrupted: Please check the cable and the receive
program.

```
Continue transmission?
```

(1)

You can continue sending the part program.
Press the "OK" SK on the PPU.

OK
Or you can abort the sending of the part program
Press the "Cancel" SK on the PPU.

Step 3 Transfer a part program to the PPU from a PC.

Press "Program Manager" on the PPU.

Press the "RS232" SK on the PPU.

Press the "Accept" SK on the PPU.

Accept

Receiving of data	192be, 8,1, NoNE
File:	
From	RS232
To	
Bytes:	

Check the interface setting and start the communication software to send the program from PC.
(Press "Send Data" on SINUCOM PCIN to send data.)

The PPU will display a window showing the progress of the transfer.

Receiving of data	$19200,8,1$, NONE	
File:	_N_DEMO_PART_1_MPF	
Fron	RS232	
To	1_N_MPF_DIR	
Bytes:	903	

SEQUENCE

"USB" is used to transfer the programs to and from the NC.
Step 4 Use the "Copy" and "Paste" SKs to transfer the part program from NC to USB.

Connect a USB device with sufficient memory to the USB interface on the PPU.
Press the "NC" SK on the PPU.

Use "Cursor + Select" to select the required part program. The selected program will be highlighted.

Press the "Copy" SK on the PPU.
Press the "USB" SK on the PPU.
Press the "Paste" SK on the

Step 5 Use the "Copy" and "Paste" SKs to transfer the part program from USB to NC.

Connect the USB device with the stored target programs to the USB interface on the PPU.
Press the "USB" SK on the PPU.

Use "Cursor + Select" to select the required part program. The selected program will be highlighted.

Press the "Copy" SK on the PPU.

Press the "NC" SK on the PPU.

N $\mathrm{\underline{ } \mathrm{\underline{Cl}}} \mathrm{NC}$

Paste

The PPU has an online help which shows the contents of standard documents.

Press the "Help" key on the PPU.

(1)

Press the "Cur. Topic" SK on the PPU. \square

The help information related to the current topic will be shown on screen.

The online help manual of the OEM will be shown on the screen.

Press the "TOC" SK on the PPU.

The online help from the Siemens manual will be shown.

SEQUENCE

"Face cutting" is used to cut the oversized materials on the rough face before starting to machine.

Step 1

Press the "Machine" key on the PPU.
Press the "JOG" key on the MCP.

Press the "Sett." SK on the PPU.

\square 1\%is sett.

Enter appropriate values in "Retraction plane" and "Safety distance".
Press the "Input" key on the PPU to activate the settings.

SEQUENCE

R

parameters

The arithmetic parameters are used in a part program for value assignment, and also for some necessary value calculations. The required values can be set or calculated by the control system during program execution. Some of the common arithmetic functions are shown below:
Arithmetic parameters
+
-
\prime
$=$
$\operatorname{Sin}()$
COS ()
TAN()
ASIN()
ACOS()
ATAN2(,)
SQRT()
ABS()
Meaning
Addition
Subtraction
Multiplication
Division
Equals
Sine
Cosine
Tangent
Arcsine
Arccosine
Arctangent2
Square root
Absolute value

Note:

Reprocessing stop
Programming the STOPRE command in a block will stop block preprocessing and buffering. The following block is not executed until all preprocessed and saved blocks have been executed in full. The preceding block is stopped in exact stop (as with G9).

Additional Information
 Part 1

SEQUENCE

You can change the time on the control if required when the clocks changes from summer time to winter time.

Make sure the password is set to the "CUSTOMER" access level.
Press the "Date time" SK on the PPU.

Date and Tine

Date and Time setting					
Current	2012/1		15:12:26		
Format	YYY/		HH:MM : SS		
New	0000 /00	180	日8	:80	:00

Enter a new "Date" and "Time".
Date and Time
Date and Time setting

Current
Format
2012/84/25

Press "Shift" and "Alarm" on the PPU simultaneously.

仓

Make sure the password is set to the "CUSTOMER" access level.
Press the "Save data" SK on the PPU.

SEQUENCE

Press the "OK" SK on the PPU.

\square
OK
Data being saved
Do not operate or switch off ?

While the control is saving data to the system, do not operate or switch off the control!

When a machine has a manual gearbox on the spindle, it is the responsibility of the operator to change gear at the correct place in the part program.

If the machine tool manufacturer has fitted an automatic gearbox, the following M -codes can be used to change gear in the part program:

Gear stages M40, M41, M42, M43, M44 and M45 are available.
M40 Automatic gear selection
M41 Gear stage 1
M42 Gear stage 2
M43 Gear stage 3
M44
M45
Gear stage 4
Gear stage 5
Example:
The machine tool manufacturer specifies a speed range for each gear stage:

| S0...500 | Gear stage $1 \rightarrow$ M41 |
| :--- | :--- | :--- |
| S400..1200 | Gear stage $2 \rightarrow$ M42 |
| S1000..2000 | Gear stage $3 \rightarrow$ M43 |

If the operator is manually selecting the gear stage in the part program, it is the operator's responsibility to select the correct gear stage according to the required speed.

SIEMENS

Notes
\qquad

SIEMENS

Content

Unit Description

This unit describes how to perform simple tasks on the machine and provides some additional information which may be required to operate the machine correctly.
Part 2

Unit Content

SEQUENCE

In MDA mode, you can enter and execute single and multiple lines of NC codes.

Use MDA to move the axis to a fixed position.
Press the "Machine" key on the PPU.

Press the "MDA" key on the

Delete file
Press the "Delete file" SK on the PPU.
Enter correct NC code to move the axis to the required position.

Make sure the feedrate override on the MCP is at 0% !
Press "CYCLE START" on the MCP to execute the MDA program.

Turn the feedrate override on the MCP gradually to the required value.

SEQUENCE

The M function initiates switching operations, such as "Coolant ON/ OFF". Various M functions have already been assigned a fixed functionality by the CNC manufacturer. The M functions not yet assigned are reserved for free use of the machine tool manufacturer.
With H functions, the meaning of the values of a specific H function is defined by the machine tool manufacturer.
M codes and H functions created by the OEM should be backed up by the machine tool manufacturer.

Specified M function	Explanation	Specified M function	Explanation
M0	Stop program	M6	Tool change
M1	Stop program with conditions	M7 / M8	Coolant on
M2	End program	M9	Coolant off
M30	End program and back to the beginning	M40	Select gear stage automatically
M17	End subprogram	M41~M45	Change spindle gear
M3 / M4 / M5	Spindle CW/CCW/ Stop		

Subprogram for positions of the four pockets.

Example

The structure of a subprogram is identical to that of the main program, but a subprogram contains M17 - end of program in the last block of the program sequence. This means a return to the program level where the subprogram was called.

The subprogram should be given a unique name enabling it to be selected from several subprograms. When you create the program, the program name may be freely selected.
However, the following rule should be observed:
The name can contain letters, numbers and underscores and should be between 2 and 8 characters long.

Example: LRAHMEN7

SEQUENCE

Subprograms can be called from a main program, and also from another subprogram. In total, up to eight program levels, including the main program, are available for this type of nested call.

In addition to the common specification in Cartesian coordinates (X, Y, Z), the points of a workpiece can also be specified using polar coordinates.
Polar coordinates are also helpful if a workpiece or a part of it is dimensioned from a central point (pole) with specification of the radius and the angle.
The polar coordinates refer to the plane activated with G17 to G19. In addition, the third axis perpendicular to this plane can be specified. When doing so, spatial specifications can be programmed as cylindrical coordinates.
The polar radius $\mathrm{RP}=$ specifies the distance of the point to the pole. It is saved and must only be written in blocks in which it changes, after the pole or the plane has been changed.
The polar angle AP= is always referred to the horizontal axis (abscissa) of the plane (for example, with G17: X axis). Positive or negative angle specifications are possible. The positive angle is defined as follows: Starting from the plus direction of X axis and rotates CCW.
It is saved and must only be written in blocks in which it changes, after the pole or the plane has been changed.

Basic Theory

G110 Pole specification relative to the setpoint position last programmed (in the plane, e.g. with G17: X/Y)
(when using G110, please always take the current position of the tool as the reference point to specify the new pole)
G111 Pole specification relative to the origin of the current workpiece coordinate system (in the plane, e.g. with G17: X/Y)
G112 Pole specification, relative to the last valid pole; retain plane
Programming example

```
N10 G17
N20 G111 X17 Y36
AP=45 RP=50
N80 G112 X35.35 Y35.35
AP=45 RP=27.8
N90 ... AP=12.5 RP=47.679
N100 ... AP=26.3 RP=7.344 Z4
```

; X/Y plane

```
; X/Y plane
    ; pole coordinates in the current workpiece
    ; pole coordinates in the current workpiece
    coordinate system
    coordinate system
; new pole, relative to the last pole as a
; new pole, relative to the last pole as a
    polar coordinate
    polar coordinate
; polar coordinate
; polar coordinate
; polar coordinate and Z axis (= cylinder
; polar coordinate and Z axis (= cylinder
    coordinate)
```

```
    coordinate)
```

```

\section*{Additive workpiece \\ offsets}

The programmable workpiece offsets TRANS and ATRANS can be used in the following cases:
- For recurring shapes/arrangements in various positions on the workpiece
- When selecting a new reference point for dimensioning

This results in the current workpiece coordinate system.
TRANS X...Y... Z... ; programmable offset (absolute)
ATRANS X...Y... Z... ; programmable offset, additive to existing offset (incremental)
TRANS ; without values, clears old commands for offset
Programming example
\begin{tabular}{ll} 
N20 TRANS X20.0 Y15.0 & \begin{tabular}{l} 
programmable offset \\
subprogram call
\end{tabular}
\end{tabular}

\section*{Basic Theory}
```

Coordinate
cotation
ROT AROT

```

The programmable rotation ROT, AROT can be used:
The rotation is performed in the current plane G17, G18 or G19 using the value of RPL=...specified in degrees.
```

ROT RPL=... ; programmable rotation offset (absolute).
AROT RPL=... ; programmable offset, additive to existing offset
(incremental)
ROT
; without values, clears old commands for offset

```

N10 G17
N20 AROT RPL=45 additive 45 degree rotation L10 subprogram call



A scale factor can be programmed for all axes with SCALE, ASCALE. The path is enlarged or reduced by this factor in the specified axis. The currently set coordinate system is used as the reference for the scale change.

SCALE X...Y... Z... ; programmable rotation offset (absolute)
ASCALE X...Y... Z... ; programmable offset, additive to existing offset (incremental)

If a program contains SCALE or ASCALE, this must be programmed in a separate block.
Programming example
N10 G17
N20 SCALE X2.0 Y2.0 ; contour is enlarged two times in \(X\) and \(Y\)
L10

```

Program
example

```

This describes and analyzes the additive offset, coordinate rotation, scaling functions mentioned above.

Machining target dimension drawing and the final effect are as follows:


Drawing 1—original workpiece machining
Drawing 2-coordinate rotates \(100^{\circ}\)
Drawing 3-(1)Drawing 2 along \(X\) axis mirror image
(2)Coordinate rotates \(20^{\circ}\)

Drawing 4-(1)Drawing 3 along Y axis moves 60 in negative direction
(2)enlarge 1.3 times in X and Y direction

In this example, the positive direction of the XY
coordinate axis is different when machining each groove!

\begin{tabular}{ll} 
N10 & SUPA G00 Z300 D0 \\
N15 & SUPA G00 X0 Y0 \\
N20 & G17 T1 D1 \\
N25 & MSG ("change to 1 tool") \\
N30 & M5 M9 M00 \\
N35 & S5000 M3 G94 F300 \\
N40 & G00 X-28 Y 30 \\
N45 & G00 Z2 \\
N50 & LAB1: \\
N65 & POCKET3( 50, 0, 2, -5, 30, 15, 3, -28, \\
30,, \(\mathbf{5 , ~ 0 , ~ 0 , ~ 3 0 0 , ~ 1 0 0 , ~ 0 , ~ 1 1 , ~ 5 , ~ , ~ , ~ 5 , ~ 3 , ~}\) \\
N70 & LAB2: \\
N75 & M01 \\
N80 & ROT RPL=-100 \\
N85 & REPEAT LAB1 LAB2 P1 \\
N90 & M01 \\
N95 & AMIRROR X=1 \\
N100 & AROT RPL=-20 \\
N105 & M01 \\
N110 & REPEAT LAB1 LAB2 P1 \\
N115 & AROT RPL=10 \\
N120 & ATRANS Y-60 \\
N125 AROT RPL=-10 \\
N130 ASCALE X1.3 Y1.3 \\
N135 REPEAT LAB1 LAB2 P1 \\
N140 & M30
\end{tabular}

N10 N15
N25 N25
N30
N30
N35
N45
N 45
N 50
N50 LAB1:milling start sign
N65 milling rectangular groove (depth 5 mm , length 30 mm , width 15 mm , corner radius 3 mm , groove datum coordinate ( \(\mathrm{X}-28, \mathrm{Y} 30\) ), groove longitudinal axis and plane \(X\) axis clamping angle \(0^{\circ}\) )
N70 LAB2:milling groove end sign
N75
N80 coordinate axis rotates \(100^{\circ}\) in positive direction
N85 machining the same groove at the new position
N90
N95 along the new X axis to change the mirror image
N100 coordinate axis rotates \(-20^{\circ}\) in positive direction
N105
N110 machining the same groove at the new position
N115 coordinate axis rotates \(-10^{\circ}\) in
negative direction
N 120 Y axis coordinate moves 60 in negative direction
N125
N130 groove enlarged 1.3 times in the \(\mathrm{X}, \mathrm{Y}\) direction.
N135 machining the same groove at the new position
N140 end

\section*{Basic Theory}

\section*{Program} jump

NC programs process their blocks in the sequence in which they were arranged when they were written. The processing sequence can be changed by introducing program jumps. The jump destination can be a block with a label or with a block number. This block must be located within the program. The unconditional jump command requires a separate block.

GOTOF+ label: Jump forward (in the direction of the end block of the program)
GOTOB+ label: Jump backward (in the direction of the start block of the program)
Label: Name of the selected string (standing for the required jump program block) or block number

\section*{Program execution}


Unconditional jump example

\section*{Additional Information Part 2}

\section*{Basic Theory}
```

Program

```
    skip

Method 1
";" code
Using ";" code at the beginning of the block can skip this string. ";" can also be used to add remarks to the block.
See the figure on the right for an example of use.


N5 G17 G90 G500 G71
N10 T1 D1 M6
N15 S5000 M3 G94 F300
N20 G00 X50 Y50 Z5
N25 G01 Z-20
N30 Z5
N85 T2 D1 M6 Tool change
N90 S5000 M3 G94 F300
N95 G00 X60 Y55 Z10

\section*{Method 2}


When "SKP" is displayed (red circle), the skip function has been activated. After activating "SKP", using "/" at the beginning of the program string (shown in purple circle), the string will be skipped without influencing the execution.

Page 84

\section*{Basic Theory}

Calculator

You can use the calculator to calculate contour elements, values in the program editor, tool offsets and workpiece offsets and enter the results on the screen.

Press the "=" SK on the PPU.


Calculator


\section*{SEQUENCE}

C

\section*{Delete}

Back
Back
Accept

Press this SK to delete the contents in the calculator.
Press this SK to exit the calculator screen.
Use this SK to accept the input and write the values to the required position.
If the input field is already occupied by a value, the calculator will take this value into the input line.
Use the "Accept" SK to enter the result in the input field at the current cursor position of the part program editor. The calculator will then close automatically.

\section*{SIEMENS}

Notes
\(\qquad\) Program

SIEMENS

\section*{Content}

\section*{Unit Description}

This unit shows three typical program examples of frequently used milling cycles and the corresponding machining diagrams with detailed explanations.

\section*{Unit Content}


Note: All the program examples in this book are only for reference. If you want to perform actual operations, please adjust the tool offset, coordinate moving range, workpiece plane settings, etc. according to the actual machine conditions!

\section*{Drawing}


Make sure all the preparations and safety measures have been performed be-
fore machining!


The zero point of the workpiece is located at the center point of the workpiece

\section*{Tool information:}

T1 Milling tool D50 T2 Milling tool D8

\begin{tabular}{|c|c|c|}
\hline 3 tim & \[
\begin{aligned}
& ==\text { Repeat rectangular pocket milling } \\
& =========
\end{aligned}
\] & milling 3 times===== \\
\hline \multirow[t]{2}{*}{N200} & REPEAT _ANF _END P=3 & \multirow[t]{2}{*}{N200 Repeat N160~N190 operation three times} \\
\hline & Cancel rotation & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { N210 } \\
& \text { N220 }
\end{aligned}
\]} & ROT & \multirow[t]{2}{*}{\begin{tabular}{l}
; =======Cancel rotation========= \\
N210 cancel all the coordinate rotation com-
\end{tabular}} \\
\hline & S4500 M3 & \\
\hline & ===Start rectangular pocket finish- & N220 \\
\hline \multicolumn{2}{|l|}{ing========} & \multirow[t]{2}{*}{; ===Start (1) rectangular pocket finishing===} \\
\hline N230 & ANF1: & \\
\hline N240 & POCKET3( 50, 0, 2, - 5, 13, 10, 4, -13, & N230 _ANF1: Milling start sign \\
\hline 16, 0, & 2.5, 0.1, 0.1, 300, 200, 2, 2, 2.5, & N240 milling rectangular groove (depth, \\
\hline \multicolumn{2}{|l|}{2, 2)} & \multirow[t]{2}{*}{length, width, corner radius, base point, corner angles are the same as the} \\
\hline \multicolumn{2}{|l|}{; ==Adaptive rotation around Z axis==} & \\
\hline \multirow[t]{2}{*}{N260} & AROT Z90 & point, corner angles are the same as the above parameters), plane feedrate \(300 \mathrm{~mm} /\) \\
\hline & _END1: & min , depth direction feedrate \(200 \mathrm{~mm} / \mathrm{min}\), \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{; ========-Repeat rectangular pocket milling 3 times========}} & \multirow[t]{2}{*}{milling direction G2, finish machining. ; ==Adaptive rotation around Z axis===} \\
\hline & & \\
\hline \multicolumn{2}{|l|}{milling 3 times========} & \begin{tabular}{l}
; ==Adaptive rotation around \(\mathbf{Z}\) axis=== \\
N 250 rotation in positive direction \(90^{\circ}\)
\end{tabular} \\
\hline N280 & ROT & N260 _END1: Milling end sign \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{; ========-Cancel rotation=========}} & ; ====Finishing (2) (3) (4) rectangular pocket milling ==== \\
\hline & & N270 repeat N230~N260 operation three \\
\hline & & N280 cancel all the coordinate rotation \\
\hline & & N280 cancel all the coordinate rotation commands \\
\hline & & ; =====-Cancel rotation=========== \\
\hline
\end{tabular} Program

SIEMENS

\section*{Machining Process}

\section*{N290 G0 X0 YO}
; ==============Start circular pocket
roughing============
N300 POCKET4( 50, 0, 2, -5, 7.5, 0, 0, 2.5,
\(0.1,0.1,300,200,0,21,2, ~, ~ 4,1)\)
N310 S4500 M3
; ==============Start circular pocket

\section*{finishing===============}

N320 POCKET4( 50, 0, 2, -5, 7.5, 0, 0, 5,
\(0.1,0.1,300,200,0,12,2, ~, ~ 4,1)\)
N330 G0 Z100
; ==========Start drilling==========
N340 T3 D1;DRILL D3
N350 M6
N360 S5000 M3
N370 G0 X0 Y0
N380 MCALL CYCLE81( 50, 0, 2, -5, 0)
N390 HOLES2( 0, 0, 10, 45, 60, 6)
N400 MCALL
N410 M30

N290 back to workpiece zero point ; =====Start circular pocket roughing===== N300 milling circular groove (depth 5 mm , radius 7.5 mm , groove base point coordinate ( \(\mathrm{X} 0, \mathrm{Y} 0\) ), angle between groove vertical axis and plane \(X\) axis is \(0^{\circ}\) ), milling direction is positive, rough machining.
; =====Start circular pocket finishing===== N320 milling circular groove (depth 5 mm , radius 7.5 mm , groove basic point coordinate ( \(\mathrm{X} 0, \mathrm{Y} 0\) ), the clamping angle between the groove vertical axis and plane \(X\) axis is 0 ), finish machining allowance 0.1 mm , milling direction is positive finish machining, use G1 vertical groove center to insert.
N330 G0 Z100
; =========Start drilling========== N340 3 tool is drilling tool diameter 3 mm N350
N360
N370 back to workpiece zero point N380 drilling depth 5 mm , use "MCALL" mode to use command, means drilling position decided by the parameters in N490
N390 circular line hole forms cycle command (circular center point coordinate ( \(\mathrm{XO}, \mathrm{YO}\) ), radius 10 mm , angle between the line with first hole and circular center point and the \(X\) axis in positive direction is \(45^{\circ}\), angle between the holes is \(60^{\circ}\), circular hole number 6 个) N400 cancel mode use
N410 M30

\section*{Drawing}


Workpiece zero point is located in the top left corner.

\section*{Tool information:}

T1 Milling tool D50
T2 Milling tool D12
T4 Milling tool D10 Program
\begin{tabular}{|c|c|}
\hline N10 & G17 G90 G60 G54 \\
\hline N20 & T1 D1 ;FACEMILL D50 \\
\hline N30 & M6 \\
\hline N40 & S3500 M3 \\
\hline N50 & G0 X0 Y0 \\
\hline N60 & G0 Z2 \\
\hline \multicolumn{2}{|l|}{; =======-Start face milling===} \\
\hline N70 & CYCLE71( 50, 1, 2, 0, 0, 0 \\
\hline \multicolumn{2}{|l|}{1, 40, , 0.1, 300, 11, )} \\
\hline N80 & S4000 M3 \\
\hline N90 & CYCLE71( 50, 0.1, 2, 0, 0 \\
\hline \multicolumn{2}{|l|}{, 1, 40, , 0, 250, 32, )} \\
\hline \multicolumn{2}{|r|}{Start contour milling} \\
\hline N100 & T2 D2 ;END MILL \\
\hline N110 & M6 \\
\hline N120 & S3500 M6 \\
\hline N130 & CYCLE72( "CON1:CON1 \\
\hline \multicolumn{2}{|l|}{-5, 2, 0.1, 0.1, 300, 300, 11, 42, 1,} \\
\hline = \(=\) & \(==\) Start path milling with \\
\hline \multicolumn{2}{|l|}{compensation \(=======\)} \\
\hline N140 & T4 D1 ;ENDMILL D10 \\
\hline N150 & M6 \\
\hline N160 & S4000 M3 \\
\hline N170 & G0 X55 Y-15 \\
\hline N180 & G0 Z2 \\
\hline N190 & G1 F300 Z-8 \\
\hline N200 & G42 G1 Y-15 X50 \\
\hline N210 & G1 X44 Y-2 RND=2 \\
\hline N220 & G1 Y0 X 22 \\
\hline N230 & G40 Y30 \\
\hline N240 & M30 \\
\hline
\end{tabular}


N70 start point (X0, Y0), the length and the width are 50 mm , feedrate \(300 \mathrm{~mm} / \mathrm{min}\), parallel to the \(X\) axis to perform the rough machining

N90 start point (X0, Y0), the length and the width are 50 mm , feedrate \(250 \mathrm{~mm} / \mathrm{min}\), finishing allowance 0 , along the direction parallel to \(:=====\) Start contour milling machining
N100 tool 2 is milling tool
N110
N120
N130 contour cutting depth 5 mm , all finishing allowances 0.1 mm , the feedrate of surface machining and cutting direction \(300 \mathrm{~mm} / \mathrm{min}\), to do rough machining approaching path is ang a straight line length 4 mm , the parame ters of feedrate/path/length in retraction and approach are equal
; ====Start path milling with radius compensation \(==\)
mm
N160
N170
N190
N20 G42 activate tool radius compensation circle, radius is 2 mm
is the reverse circle poin N240
;*************CONTOUR************
CON1:
;\#7_DIgK contour definition begin - Don
change!;*GP*;*RO*;*HD*
G17 G90 DIAMOF;*GP**
G0 X3 Y3 ;*GP*
G2 X3.27 Y-40.91 I=AC(-52.703) J=AC(-
19.298) ;*GP*
G3 X46.27 Y-47 I=AC(38.745) J=AC
(54.722) ;*GP*
G1 X42 Y-8;*GP*
X3 Y3 ;*GP*
;CON,0,0.0000,4,4,MST:0,0,AX:X,Y,I,J
;'GP*;RO*;*HD*
;S,EX:3,EY:3;*GP*;*RO*;*HD*
;ACW,DIA:0/35,EX:3.27,DEY:-
43.91,RAD:60;*GP*;*RO;*HD*
;ACCW,DIA:0/35,DEX:43,EY:-
47,RAD:102;*GP*;*RO*;*HD*
;LA,EX:42,EY:-8;*GP*;'RO*;*HD*
;LA,EX:3,EY:3;*GP*;*RO*;*HD*
;\#End contour definition end - Don't
change!;*GP*;*RO*;*HD*
CON1 E..****** CONTOUR ENDS*******

This program is additional description information created by the system automatically after finishing the programming of the rough cutting CYCLE72 and does not affect the system execution.

\section*{Drawing}
program 3

Part of the cycles in the program are taken as examples in Section 5, "Create Part Program Part 2"!



Tool information
T1 Milling tool D50 T2 Milling tool D12
T3 Milling tool D10
T4 Milling tool D16

T5 Milling tool D5 T6 Drilling tool D10 T7 Drilling tool D5 T8 Tap D6

\section*{Machining Process}
\begin{tabular}{ll} 
N10 & G17 G90 G54 G71 \\
N20 & SUPA G00 Z300 D0 \\
N30 & SUPA G00 X300 Y300 \\
N40 & T1 D1 \\
N50 & MSG ("Please change to Tool No 1") \\
N60 & M05 M09 M00 \\
N70 & S4000 M3 \\
; ======Face milling start======== \\
N80 & CYCLE71( 50, 2, 2, 0, 0, 0, 70, 100, \\
0, 2, 40, 2, 0.2, 500, 41, 5) \\
N90 & S4500 M3 \\
N100 & CYCLE71( 50, 2, 2, 0, 0, 0, 70, 100, \\
0, 2, 40, 2, 0.2, 300, 22, 5) \\
; ========Face milling end======== \\
N110 & SUPA G00 Z300 D0 \\
N120 & SUPA G00 X300 Y300 \\
; =======Path milling start======== \\
N130 & T3 D1 \\
N140 & MSG( "Please change to Tool No 3") \\
N150 & M05 M09 M00 \\
N160 & S5000 M3 G94 F300 \\
N170 & G00 X-6 Y92 \\
N180 & G00 Z2 \\
N190 & G01 F300 Z-10 \\
N200 & G41 Y 90 \\
N210 & G01 X12 RND=5 \\
N220 & G01 Y97 CHR=2 \\
N230 & G01 X70 RND=4 \\
N240 & G01 Y90 \\
N250 & G01 G40 X80 \\
N260 & G00 Z50 \\
;=======Path milling end========
\end{tabular}

\footnotetext{
\section*{N10}

N20
N30
N40
N50 hint:change to tool 1 N60 N70
; ========Face milling start======= N80 start point ( \(\mathrm{XO}, \mathrm{YO}\) ) , machining length: X \(\rightarrow 70 \mathrm{~mm}, \mathrm{Y} \rightarrow 100 \mathrm{~mm}\), angle between vertical axis and \(X\) axis is \(0^{\circ}\), finishing allowance 0.2 mm , feedrate \(500 \mathrm{~mm} / \mathrm{min}\), along the alternate direction parallel to the Y axis to perform the finishing
N90
N100 repeat N80 contour process, the difference in the feedrate is \(300 \mathrm{~mm} / \mathrm{min}\) along the single direction parallel to the \(Y\) axis to perform the finishing
; ==========Face milling end========
; \(==\)
N110
N120
; =======Path milling start==========
N130
N140
N150
ange to tool 3
160 feedrate \(300 \mathrm{~mm} / \mathrm{min}\)
N170
N180
N180
N200 left side radius compensation
N200 left side radius compensation
N210 circle, milling radius is 5 mm
N230
N230
N250 cancel tool radius compensation N260
; ==========Path milling end======
} Program

\section*{Machining Process}

 Program

\section*{Machining Process}
N580 SUPA G00 Z300 D0
N590 SUPA G00 X300 Y300
; ========Centering start=========
N600 T6 D1
N610 MSG ("Please change to Tool No 6")
N620 M05 M09 M00
N630 S6000 M3
N640 G00 Z50 X36 Y24.1
N650 MCALL CYCLE82( 50, -3, 2, -5, 0, 0.2)
N660 HOLES2( 36, 24.1, 10, 90, 60, 6)
N670 X36 Y24.1
N680 MCALL; Modal Call OFF
;=========Centering end=========
N690 SUPA G00 Z300 D0
N700 SUPA G00 X300 Y300
;=========Drilling start==========
N710 T7 D1
N720 MSG ("Please change to Tool No 7")
N730 M05 M09 M00
N740 S6000 M3
N750 MCALL CYCLE83( 50, -3, 1, , 9.24, ,5,
90, 0.7, 0.5, 1, 0, 3, 5, 1.4, 0.6, 1.6)
N760 HOLES2( 36, 24.1, 10, 90, 60, 6)
N770 X36 Y24.1
N780 MCALL ; Modal call Off
;=========Drilling end==========

N580
N590
; ==========Centering start=======
N610
N610 hint:change to tool 6
N620
N640
N650 CYCLE82 mode recall command active \(\rightarrow\) drilling depth 5 mm , last drilling depth
(delayed milling) stops for 0.2 s
N660 hole arrangement circular center coordinate (X36,Y24.1) , circular radius 10 mm , start angle \(90^{\circ}\), angle between the holes is \(60^{\circ}\), circular hole number 6
N670 continue drilling with (X36, Y24.1) as for the center point
N680 cancel mode recall command
; ==========Centering end========
N690
N700
; ============10 Drilling start \(========\)
N710
N720 hint: change to tool 7
N730
N740
N750 CYCLE83 mode recall command active \(\rightarrow\) drilling depth 9.24 mm , first drilling depth 5 mm , degression 90 , last drilling depth (delayed milling) stops for 0.7 s , stops at the start point for 0.5 s , first drilling feed modules is 1 , select \(Z\) axis as the tool axis, machining type is delayed milling, tool axis is \(Z\) axis, minimal depth 5 mm , every retraction is 1.4 mm , drillin depth stops for 0.6 s , reinsert lead dis-
tance 1.6 mm
N760 hole arrangement circular center coordinate (X36,Y24.1), circular radius 10 mm , start angle \(90^{\circ}\), angle between the mm, start angle \(90^{\circ}\), angle between the
N770 continue drilling with ( \(\mathrm{X} 36, \mathrm{Y} 24.1\) ) as the center point
N780 cancel mode recall instruction
; =========-Drilling end===========

\section*{N790 SUPA G00 Z300 D0}

N800 SUPA G00 X300 Y300
; ==========Tapping start=========
N810 T8 D1
N820 MSG ("Please change to Tool No 8")
N830 M05 M09 M00
N840 S500 M3
N850 MCALL CYCLE84( 50, -3, 2, , 6, 0.7,
\(5, ~, 2,5,5,5,3,0,0,0,5,1.4)\)
N860 HOLES2( 36, 24.1, 10, 90, 60, 6)
N870 X36 Y24.1
N880 MCALL ; Modal call Off
; ==========Tapping end===========
N890 SUPA G00 Z500 D0
N900 SUPA G00 X500 Y500;
; ==========Move to the change position
Ready to start next program or repeat

\section*{========}

\section*{N910 M3}

N790
N800
; ==========Thapping start========
,
N820 hint:change to tool 8
N840
N850 CYCLE84 mode recall active \(\rightarrow\) drilling
depth 6 mm , last tapping depth (delayed milling) stops for 0.7 s , after the cycle, the spindle M5 stops, machining dextrorotation thread, size 2 mm
, spindle stop position is \(5^{\circ}\), the tapping speed and the retraction speed of the spindle are \(5 \mathrm{r} / \mathrm{min}\), select \(Z\) axis as the tool axis, incremental drilling depth 5 mm , retraction value is 1.4 mm
N860 hole arrangement circular center coordinate (X36,Y24.1), circular radius 10 mm , start angle \(90^{\circ}\), angle between the holes is \(60^{\circ}\), circular hole number 6 N870 continue drilling with \(\mathrm{X} 36, \mathrm{Y} 24.1\) ) as the center tapping
N880 cancel mode recall instruction
; ===========Tapping end=========
; \(\mathbf{N} 890\)
N900
; =======Move to the change position Ready to start next program or repeat \(======\) N910

Machining Process

N1100 ;************* CONTOUR************
N1110 CONT1:
N1120 ;\#7__DIgK contour definition begin -
Don't change!;*GP*;*RO*;*HD*
N1130 G17 G90 DIAMOF;*GP*
N1140 G0 X7 Y0 ;*GP*
N1150 G1 Y61.35 **GP*
N1150 G1 Y61.35 ;*GP*
N1160 G2 X13.499 Y86 I=AC(57) J=AC
(61.35) ;*GP*

N1170 G1 X63 RND=2 ;*GP*
N1180 Y0 ;*GP*
N1190;CON,0,0.0000,4,4,MST:0,0,AX:X,Y,I,J,
TRANS:1;*GP***RO*;*HD*
N1200 ;S,EX:7,EY:0;*GP*;*RO*;*HD*
N1210 ;F,LFASE:0;*GP*:*RO*;*HD*
N1220 ;LU,EY:61.35;*GP*;*RO*;*HD*
N1230;ACW,DIA:210/0,EY:86,AT:0,RAD:50;*
GP*;*RO**HD*
N1240 ;LR,EX:63;*GP*;*RO*;*HD*
N1250 ;R,RROUND:2;*GP*;*RO*;*HD*
N1260 ;LD,EY:0;*GP*;*RO*;*HD*
N1260 ;LD,EY:0;*GP*;*RO*;*HD*
N1270 ;\#End contour definition end - Don
N1270 ;\#End contour defi
change!;*GP*;*RO*;*HD**
N1280 CONT1_E:;************* CONTOUR ENDS ************

This section is additional description information created by system automatically after finishing the programming of the rough cutting CYCLE95 and does not affect the system execution.

\section*{SIEMENS}

\section*{Notes}
\(\qquad\)

\section*{SIEMENS}

Notes
\(\qquad\)

\section*{Content}

\section*{Unit Description}

This unit describes the ISO operating functions in 808D, compares the similarities and differences of the machining code in DIN mode and ISO mode and shows how to transfer and implement the ISO machining program.

\section*{Unit Content}


\section*{Basic Theory}


Siemens standard machining codes are implemented in DIN mode. The 808D also provides also provides appropriate functions for implementing the ISO commands, but the ISO mode must be activated during operation.

\section*{ISO function switch}

\section*{Method 1}
 on the PPU. Input the manufacturer's


Press the "ISO mode" SK on the right. -

A dialog box appears prompting whether to activate the new setting. Select the

OK "OK" SK to activate it.


\section*{Basic Theory}


A red ISO appears at the top of the screen and the ISO mode button on the right is highlighted in blue.

\section*{Method 2}

A
When using method 2 to activate the ISO mode, it will exit ISO mode and return to the default DIN mode via "Reset" button or after finishing the machining program.

Insert G291 in the first line of the ISO part program to be executed and insert G290 in front of M30


If ISO is displayed at the top of the screen, it is activated.
mands must be set separately in a line!


All the ISO codes described in this unit can be implemented in the ISO mode of the 808D system!

Brief description of typical, frequently used ISO codes
\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ ISO code } & \multicolumn{1}{|c|}{ Description } & \begin{tabular}{c} 
Compare \\
with DIN
\end{tabular} \\
\hline G00 & Orientation (rapid traverse) & As DIN \\
\hline G1 & Linear difference & As DIN \\
\hline G17/G18/G19 & XY plane / ZX plane / YZ plane & As DIN \\
\hline G20/G21 & Input in inch/mm & G70/G71 \\
\hline G41/G42/G40 & \begin{tabular}{l} 
Left tool tip radius compensation / right tool tip \\
radius compensation / cancel tool radius \\
compensation
\end{tabular} & As DIN \\
\hline G54 ~ G59 & Select workpiece coordinate system & As DIN \\
\hline G80 & Cancel fixed cycle & Absolute/incremental programming \\
\hline G90/G91 & Feedrate F in mm/min / mm/r & As DIN \\
\hline G94/G95 & Spindle speed & RIN \\
\hline S & \begin{tabular}{l} 
Reverse circle (note the form there must be \\
", "before R parameter)
\end{tabular} & RND \\
\hline , R & Spindle right / spindle left / spindle stop & As DIN \\
\hline M3/M4/M5 & \begin{tabular}{l} 
Subprogram call (P+ subprogram name/ L+ \\
times)
\end{tabular} & \begin{tabular}{c} 
Program \\
name + L
\end{tabular} \\
\hline M98 P_L_ & End of Subroutine & M17 \\
\hline M99 & & \\
\hline
\end{tabular}

\section*{Basic Theory}

In DIN mode, the tool length is activated automatically, but in ISO mode, you must activate the tool length via G code.

G43/G44 and G49
Use G43/G44, the tool length compensation value will be activated.
G43: Tool length compensation in positive direction G44: Tool length compensation in negative direction G49: Cancel tool length compensation

G98: Fixed cycle back to the original point
G99 : Fixed cycle back to R point
G80 : Cancel the fixed cycle Pausing function G04 G04 X5.0 \(\rightarrow\) delay 5 s G04 P5 \(\rightarrow\) delay 5 ms

H01 \(\rightarrow\) Offset value 20.0
\(\mathrm{H} 02 \rightarrow\) Offset value -30.0
\(\mathrm{H} 03 \rightarrow\) Offset value 30.0
\(\mathrm{H} 04 \rightarrow\) Offset value -20.0
G90 G43 Z100.0 H01; Z will reach 120.0
G90 G43 Z100.0 H02; Z will reach 70.0 G90 G44 Z100.0 H03; Z will reach 70.0 G90 G44 Z100.0 H04; Z will reach 120.0

Note: In DIN mode, you must open the H code list in the tool list. For information on the opening method, please refer to the instructions for H code on page 104

\section*{N5 G90 T1 M06}

N10 M3 S2000; spindle rotation
N20 G99 G81 X300 Y-250 Z-150
R-10 F120; after orientation drill-
ing, back to \(R\) point
N30 X1000. ; after orientation drill-
ing, back to \(R\) point
N40 G04 X2.0 ; delay 2 s
N50 G98 Y-550 ; after orientation drill-
ing, back to start point
N60 G80
; cancel the fixed cycle
N70 M5 ; spindle rotation stop
N80 M30

\section*{Code G02 and G03}

G02 circular interpolation in positive direction

G03 circular interpolation in negative direction You can specify the circle end point in the following X/Z address for both. You can also describe circle radii with I, J, K incremental or use parameter R to specify radii directly.


Method 1 (use incremental to describe circular radius)

\section*{G92 X200.0 Y40.0 Z0}

G90 G03 X140.0 Y100.0 I-60.0 F300.0
G02 X120.0 Y60.0 I-50.0

Method 2 (use parameter R to describe circular radius)
G92 X200.0 Y40.0 Z0
G90 G03 X140.0 Y100.0 R60.0 F300
G02 X120.0 Y60.0 R50.0

When specifying circle radii with parameter R

Circles less than \(180^{\circ}\) is assigned positive values
\(\rightarrow\) G02 X6.0 Y2.0 R50.0
Circles greater than \(180^{\circ}\) are assigned negative values \(\rightarrow\) G02 X6.0 Y2.0 R-50.0


\section*{Basic Theory}

Frequently used letter meanings of typical fixed cycle codes in ISO
\begin{tabular}{|c|c|c|c|}
\hline P. & Descriptions & Unit & Applied range and note \\
\hline X/Y & Cutting end point \(\mathrm{X} / \mathrm{Z}\) absolute coordinate values & & \[
\begin{aligned}
& \text { G73 / G74 / G76 } \\
& \text { G81 ~ G87 / G89 }
\end{aligned}
\] \\
\hline Z & The distance incremental value between R point and the bottom of the hole, or the absolute coordinate value of the bottom of the hole & & \[
\begin{aligned}
& \text { G73 / G74 / G76 } \\
& \text { G81 ~ G87 / G89 }
\end{aligned}
\] \\
\hline R & The distance incremental value between the start point plane and R point or the absolute coordinate value of \(R\) point & & \[
\begin{aligned}
& \text { G73 / G74 / G76 } \\
& \text { G81 ~ G87 / G89 }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Q} & The depth of every cut (incremental value) & & G73 / G83 \\
\hline & Offset value (incremental value) & & G76 / G87 \\
\hline P & The delay time at the bottom of the hole & ms & \[
\begin{aligned}
& \text { G74 / G76 / G89 } \\
& \text { G81 ~ G87 }
\end{aligned}
\] \\
\hline F & The feedrate of the cutting & mm/min & \[
\begin{aligned}
& \text { G73 / G74 / G76 } \\
& \text { G81 ~ G87 / G89 }
\end{aligned}
\] \\
\hline K & The repeat times of the fixed cycle & & \[
\begin{aligned}
& \text { G73 / G74 / G76 } \\
& \text { G81~G87 / G89 }
\end{aligned}
\] \\
\hline
\end{tabular}

In 808D, the default ISO program feed distance unit is mm ! (X100 \(\rightarrow 100 \mathrm{~mm}\) )

Note: change the parameter 10884=0, to make X100 \(\rightarrow 100\) um / X100. \(\rightarrow\) 100 mm

\section*{Basic Theory}

\section*{G76 Boring cycle}

Common programming structures: G76 X-Y-Z-R-Q-P-F-K
Motion process:
(1) Drilling motion (-Z) \(\rightarrow\) cutting feed
(2) Motion at the bottom of the hole \(\rightarrow\) spindle stop directional
(3) Retraction motion \((+Z) \rightarrow\) fast feed

\section*{G81 Drilling cycle (fixed point drilling)}

Common programming structures:
G81 X-Y-Z-R-F-K
Motion process:
(1) Drilling motion (-Z) \(\rightarrow\) cutting feed
(2) Motion at the bottom of the hole \(\rightarrow\) none
(3) Retraction motion ( \(+\mathbf{Z}\) ) \(\rightarrow\) fast feed

G76 application example program:
M3 S500 ; spindle rotation
G90 G99
G76 X300 Y-250 Z-150 R-100 Q5 P1000 F120 ;after orientation bore 1st hole, then move 5 mm stop for 1 s at the bottom of the hole, back to the R point
Y-50 ;bore 2nd hole (the same as 1st hole)
Y-80 ;bore 3rd hole (the same as 1st hole)
X10 ;bore 4th hole (the same as 1st hole Y10 ;bore 5th hole (the same as1st hole)
G98 Y-750 ;bore 6th hole, then move 5 mm ,
stop for 1 s at the bottom of the hole, back to the start point position plane
G80 ;cancel fixed cycle
G28 G91 X0 Y0 Z0 ;back to reference point
M5 ;spindle rotation stop
M30

\section*{G81 application example program:}

\section*{M3 S2000 ; spindle rotation}

G90 G99 G81 X300 Y-250 Z-150 R-10 F120
; after orientation drill 1st hole, back to R point
Y-550 ;after orientation drill 2nd hole, back to R point
Y-750 ;after orientation drill 3rd hole, back to R point
X1000 ;after orientation drill 4th hole, back to R point
Y-550 ;after orientation drill 5th hole, back to R point
G98 Y-750; after orientation drill 6th hole, back to start plane
G80 ;cancel fixed cycle

G82 Drilling cycle (countersink drilling) Common programming structures: G82 X-Y-Z-R-P-F-K

\section*{Motion process:}
(1) Drilling motion \((-Z) \rightarrow\) cutting feed
(2) Motion at the bottom of the hole \(\rightarrow\) pause
(3) Retraction motion \((+Z) \rightarrow\) fast feed

\section*{G82 application example program}

M3 S2000 ; spindle rotation
G90 G99 G82 X300 Y-250 Z-150 R-100 P1000 F120
;after orientation drill 1 st hole, stop for 1 s at the bottom
of the hole, back to the \(R\) point.
Y-550 ; drill 2nd hole (the same as 1st hole)
Y-750 ;drill 3rd hole (the same as 1st hole)
X1000 ;drill 4th hole (the same as 1st hole)
Y-550
G98 Y-750 ;drill 5th hole (the same as 1st hole)
bottom of the holdrill 6th hole, stop for 1 s at the G80 ;cancel fixed cycle
G28 G91 X0 Y0 Z0 ; back to reference point
M5 ;spindle rotation stop
M30

G83 Drilling cycle (deep hole drilling Common programming structures G83 X-Y-Z-R-Q-F-K
Motion process:
(1) Drilling motion (-Z) \(\rightarrow\) intermission feed
(2) Motion at the bottom of the hole \(\rightarrow\) None
(3) Retraction motion \((+Z) \rightarrow\) fast feed

\section*{G83 application example program:}

M3 S2000 ; spindle rotation
G90 G99 G83 X300 Y-250 Z-150 R-100 Q15 F120 ;after orientation drill 1st hole, back to \(R\) point
Y-550. ; after orientation drill 2nd hole, back to \(R\) point Y-750. ; after orientation drill 3rd hole, back to \(R\) point X1000. ; after orientation drill 4th hole, back to \(R\) poin Y-550. ; after orientation drill 5th hole, back to \(R\) point G98 Y-750. ; after orientation drill 6th hole, back to start plane
G80 ;cancel fixed cycle
G28 G91 X0 Y0 Z0 ; back to reference point
M5 ; spindle rotation stop
M30

\section*{G84 Tapping cycle}

Common programming structures:
G84 X-Y-Z-R-P-F-K
Motion process:
(1) Drilling motion (-Z) \(\rightarrow\) cutting feed
(2) Motion at the bottom of the hole
spindle rotation in negative direction
(3) Retraction motion \((+\mathbf{Z}) \rightarrow\) cutting feed

G84 execution operation graphic:
With command G99 without operation in red line With command G98 with operation in red line


G85 execution operation graphic:
With command G99 without operation in red line With command G98 with operation in red line Except that the spindle is not rotating at the bottom of the hole, G85 is same as G84

G85 boring cycle
Common programming structures:
G85 X—Y-Z—R—F-K
Motion process:
(1) Drilling motion \((-Z) \rightarrow\) cutting feed
(2) Motion at the bottom of the hole \(\rightarrow\)
none
(3) Retraction motion \((+Z) \rightarrow\) cutting feed


\section*{G86 boring cycle}

Common programming structures:
G86 X-Y-Z-R-F-K
Motion process:
(1) Drilling motion (-Z) \(\rightarrow\) cutting feed
(2) Motion at the bottom of the hole \(\rightarrow\)
spindle stop
(3) Retraction motion ( \(+Z\) ) \(\rightarrow\) fast feed

\section*{G89 boring cycle}

Common programming structures:
G89 X-Y-Z-R-P-F-L
Motion process:
(1) Drilling motion \((-Z) \rightarrow\) cutting feed
(2) Motion at the bottom of the hole \(\rightarrow\) pause
(3) Retraction motion \((+Z) \rightarrow\) cutting feed

G86 execution operation graphic:
With command G99 without operation in red line With command G98 with operation in red line Except for the stop at the bottom of the hole, G86 is same as G81


G89 execution operation graphic:
With command G99 without operation in red line With command G98 with operation in red line Except that the spindle stops at the bottom of the


\section*{Basic Theory}

G87 Boring cycle I / reverse boring cycle II
Common programming structures:
G87 X-Y-Z-R-Q-P-F-L
Motion process:
(1) Drilling motion (-Z) \(\rightarrow\) cutting feed
(2) Motion at the bottom of the hole
spindle stops
(3) Retraction motion (+Z) \(\rightarrow\) manual operation or fast feed

G87 execution operation graphic:
Fixed cycle I


The ISO mode function provided by the 808D can easily operate the existing ISO program!

\section*{Step 1 Transfer ISO files in USB device to 808D.}

Connect the USB device with the stored target programs to the USB interface on the PPU.
Press the "USB" SK on the PPU.

```

\$ USB

```

Use the "Cursor + Select" keys to select the required program which is then highlighted.

Press the "Copy" SK on the PPU.
Press the "NC" SK on the PPU.


A specified ISO program is then stored in the 808 D system and can be edited and executed as described above.

Step 2 Make the necessary changes to the ISO programs.

\(\triangle\)
Programs in ISO mode in the 808D have their own rules. Suitable changes must be made at the appropriate positions so that you can run the ISO programs!

\section*{Basic Theory}


Note: Every tool only can use the H value corresponding to the edge.
In the graphic above, T2 H1 cannot be executed.

\section*{Step 3 Program execution}

A

\section*{Make sure the current system is in ISO mode!}

Make sure all preparations and safety measures have been performed!

Operate as described above.

Tool and workpiece setup \(\rightarrow\) simulation \(\rightarrow\) test \(\rightarrow\) machining.

\section*{Step 4 Transfer the ISO files in the 808D to the USB device.}

Connect the USB device with sufficient memory to the USB interface on the PPU.

Press the "NC" SK on the PPU.
 NC NC

Use the "Cursor + Select" keys to select the required program which is then highlighted.
Press the "Copy" SK on the PPU.

Press the "USB" SK on the PPU.


Copy


Press the "Paste" SK on the PPU.


Paste
A specified ISO program is then stored in the USB and can be executed as required.


Basic Theory

\section*{Step 5 Sample program}


Make sure the current system is in ISO mode!
Make sure all preparations and safety measures have been performed!


ISO programs can be executed in the 808D as follows:

N10 G291
N20 T1M6
N30 G0G54G90G40
N40 M3S1200F200
N50 G43H1Z50
N60 G0X0Y-70
N70 Z5M8
N80 G1Z-5
N90 G01G41X20D1
N100 G03X0Y-50R20
N120 G1X-50,R10
N130 Y50,R10
N140 X50,R10
N150 Y-50,R10
N160 X40
N170 X0
N180 G03X-20Y-70R20
N190 G1G40X0
N200 G0Z50

Note: This program opens/exits ISO mode with theG291/G290 command. It is recommended to use the first method to open ISO mode - using the ISO mode active button on the PPU (described above)

N210 T2M6
N220 M3S3000F100
N230 G43H2Z50
N240 G0X40Y-40
N250 Z20
N260 G81Z-2R10
N270 Y40
N290 X-40
N300 Y-40
N310 G80
N320 G0Z50

N330 T3M6
N340 M3S3000F100
N350 G43H3Z50
N360 G73Z-20R10Q5
N370 Y40
N380 Y-40
N390 X40
N400 Y40
N410 G80
N420 G0G40G90G49Z100
N430 M09
N440 G290
N450 M30

\begin{tabular}{lll} 
Standard Siemens programming. & N160 & G0G40G90Z60 \\
Machining the same workpiece as & N170 & M09M05 \\
described above (can be compared & N180 & M30
\end{tabular}
with the ISO code).
N10 T1D1M6; contour milling tool
N20 G54G90G40G17
N30 M3S2000M8
N40 GOZ25
N50 X0Y-70
N55 CYCLE72( "CONT1:CONT1_E", 50,
\(0,2,-5,2.5,0.1,0.1,200,200,111,41,2\),
20, 200, 2, 20)
N60 T2D1M6; quill, drill center hole
N70 M3S2500M8
N80 MCALL CYCLE82 (50, 0, 2, 0, 2, 0)
N90 CYCLE802( 111111111, 111111111,
40, -40, 40, 40, -40, 40,
-40, -40, ,)
N100 MCALL
N110 T3D1M6; quill; deep hole drilling
N120 M3S2500M8
N130 MCALL CYCLE83( 50, 0, 2,
-20, ,-5, ,3, 0.5, 1, 1, 1, 3, 3, 0, ,0)
N140 CYCLE802 (111111111, 111111111,
\(40,-40,40,40,-40,40\),
\(-40,-40\), ,
N150 MCALL
The next paragraph describes the codes of the contour. The system will generate them automatically and does not affect the program execution.
************CONTOUR***********

\section*{CONT1:}
;\#7_DIgK contour definition begin -
Don't change!;*GP*;*RO*;*HD*
N190 G17 G90 DIAMOF;*GP*
N200 G0 X0 Y-50 ;*GP*
N210 G1 X-50 RND=10 ;*GP*
N220 Y50 RND=10 ;*GP*
N230 X50 RND=10 ;*GP*
N240 Y-50 RND=10;*GP*
N250 X0;*GP*
;CON,0,0.0000,5,5,MST:0,0,AX:X,Y,I, J;*GP*;*RO*;*HD*
;S,EX:0,EY:-50;*GP*;*RO*;*HD*
;LL,EX:-50;*GP \({ }^{* ; * R O * ; * H D * ~}\)
;R,RROUND:10;*GP*;*RO*;*HD* ;LU,EY:50;*GP*;*RO*;*HD* ;R,RROUND:10;*GP \({ }^{*} ; * R 0^{*} ; * D^{*}\)
;R,RROUND:10;*GP*;*RO*;*HD* ;LD,EY:-50;*GP*;*RO*;*HD* ;R,RROUND:10;*GP*;*RO*;*HD* ;LL,EX:0;*GP*;*RO*;*HD* ;\#End contour definition end - Don't change!;*GP*;*RO*;*HD*

CONT1_E:;****CONTOUR ENDS *****


\section*{SIEMENS}

\section*{Notes}


\section*{SIEMENS}

Notes
\(\qquad\)

\section*{Unit Content}


End
\begin{tabular}{|l|l|}
\hline Group 1: Modally valid motion commands \\
\hline Name & Meaning \\
\hline G00 & Rapid traverse \\
\hline G01 * & Linear interpolation \\
\hline G02 & Circular interpolation clockwise \\
\hline G03 & Circular interpolation counter-clockwise \\
\hline CIP & Circular interpolation through intermediate point \\
\hline CT & Circular interpolation; tangential transition \\
\hline G33 & Thread cutting with constant lead \\
\hline G331 & Thread interpolation \\
\hline G332 & Thread interpolation - retraction \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Group 2: Non-modally valid motion, dwell \\
\hline Name & Meaning \\
\hline G04 & Dwell time preset \\
\hline G63 & Tapping without synchronization \\
\hline G74 & Reference point approach with synchronization \\
\hline G75 & Fixed point approach \\
\hline G147 & SAR - Approach with a straight line \\
\hline G148 & SAR - Retract with a straight line \\
\hline G247 & SAR - Approach with a quadrant \\
\hline G248 & SAR - Retract with a quadrant \\
\hline G347 & SAR - Approach with a semicircle \\
\hline G348 & SAR - Retract with a semicircle \\
\hline
\end{tabular}

Page 109
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Group 3: Programmable frame } \\
\hline Name & Meaning \\
\hline TRANS & Translation \\
\hline ROT & Rotation \\
\hline SCALE & Programmable scaling factor \\
\hline MIRROR & Programmable mirroring \\
\hline ATRANS & Additive translation \\
\hline AROT & Additive programmable rotation \\
\hline ASCALE & Additive programmable scaling factor \\
\hline AMIRROR & Additive programmable mirroring \\
\hline G110 & Pole specification relative to the last programmed setpoint position \\
\hline G111 & Pole specification relative to origin of current workpiece coordinate system \\
\hline G112 & Pole specification relative to the last valid POLE \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Group 8: Settable zero offset } \\
\hline Name & Meaning \\
\hline G500* & Settable work offset OFF \\
\hline G54 & 1st settable zero offset \\
\hline G55 & 2nd settable zero offset \\
\hline G56 & 3rd settable zero offset \\
\hline G57 & 4th settable zero offset \\
\hline G58 & 5th settable zero offset \\
\hline G59 & 6th settable zero offset \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Group 9: Frame suppression } \\
\hline Name & Meaning \\
\hline G53 & Non-modal skipping of the settable work offset \\
\hline G153 & Non-modal skipping of the settable work offset including base frame \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Group 6: Plane selection } \\
\hline Name & Meaning \\
\hline G17 \({ }^{*}\) & X/Y plane \\
\hline G18 & Z/X plane \\
\hline G19 & Y/Z plane \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Group 7: Tool radius compensation \\
\hline Name & Meaning \\
\hline G40 * & Tool radius compensation OFF \\
\hline G41 & Tool radius compensation left of contour \\
\hline G42 & Tool radius compensation right of contour \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Group 10: Exact stop - continuous - path mode \\
\hline Name & Meaning \\
\hline G60 * & Exact positioning \\
\hline G64 & Continuous - path mode \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Group 11: Exact stop, non-modal \\
\hline Name & Meaning \\
\hline G09 & Non-modal exact stop \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Group 12: Exact stop window modally effective \\
\hline Name & Meaning \\
\hline G601 \({ }^{*}\) & Exact stop window \\
\hline G602 & Exact stop window, course, with G60, G9 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Group 13: Workpiece measuring inch/metric \\
\hline Name & Meaning \\
\hline G70 & Inch dimension data input \\
\hline G71 \({ }^{*}\) & Metric dimension data input \\
\hline G700 & Inch dimension data input; also for feedrate F \\
\hline G710 & Metric dimension data input; also for feedrate F \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Group 14: Absolute/incremental dimension modally effective \\
\hline Name & Meaning \\
\hline G90 \({ }^{*}\) & Absolute dimensions data input \\
\hline G91 & Incremental dimension data input \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Group 15: Feedrate / Spindle modally effective \\
\hline Name & Meaning \\
\hline G94 & Feedrate \(\mathrm{mm} / \mathrm{min}\) \\
\hline G95 & Feedrate F in \(\mathrm{mm} /\) spindle revolutions \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Group 16: Feedrate override modally effective \\
\hline Name & Meaning \\
\hline CFC * & Feedrate override with circle ON \\
\hline CFTCP & Feedrate override OFF \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Group 18: Behavior at corner when working with tool radius compensation \\
\hline Name & Meaning \\
\hline G450* & Transition circle \\
\hline G451 & Point intersection \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Group 44: Path segmentation with SAR modally effective \\
\hline Name & Meaning \\
\hline G340 * & Approach and retraction in space (SAR) \\
\hline G341 & Approach and retraction in the plane (SAR) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Group 47: External NC languages modally effective \\
\hline Name & Meaning \\
\hline G290 * & Siemens mode \\
\hline G291 & External mode \\
\hline
\end{tabular}

Page 111

Technical Support
If you have any questions about this product or this manual, contact the hotline:
\begin{tabular}{|l|l|}
\hline Phone & +861064719990 \\
\hline Fax & +861064719991 \\
\hline E-mail & \(4008104288 . c n @ s i e m e n s . c o m\) \\
\hline
\end{tabular}

Useful
Siemens
Websites

\section*{SINUMERIK Internet address}

Further product information can be found at the following web site:
http://www.siemens.com/sinumerik

\section*{SIEMENS}

\section*{Notes}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Everything ever wanted to know about SINUMERIK 808D:
www.automation.siemens.com/mcms/m2/en/automation-systems/cnc-sinumerik/sinumerik-controls/sinumerik-808/Pages/sinumerik-808.aspx

Everything about shopfloor manufacturing:
www.siemens.com/enc4you
Everything about the SINUMERIK Manufacturing Excellence portfolio of services:
www.siemens.com/sinumerik/manufacturing-excellence
Information about CNC training:
www.siemens.com/sinumerik/training

Siemens AG
Industry Sector
Motion Control Systems
P.O.Box 3180

91050 ERLANGEN
GERMANY

Subject to change without prior
notice
Order No.:
Dispostelle 06311
WÜ/35557 WERK.52.2.01 WS
11113.0

Printed in Germany
© Siemens AG 2012

The information provided in this brochure contains merely general descriptions or characteristics of performance which in actual case of use do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of contract.
All product designations may be trademarks or product names of Siemens AG or supplier companies whose use by third parties for their own purposes could violate the rights of the owners.```

